首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) allows the application of solution-state NMR experiments to samples that are not fully soluble and contain solids. Only the species in contact with the solvent system employed become NMR observable. In this study utilizing D2O as the solvent system we show it is possible to examine the structures at the solid-aqueous interface of a whole soil. Combining one- and two-dimensional HR-MAS NMR allowed, for the first time, the identification of fatty acids, aliphatic esters, and ethers/ alcohols as prominent species at the solid-aqueous interface of the soil with signals from sugars and amino acids also apparent. Few, if any signals from aromatic protons were observed when the soil was swollen in aqueous media, although these signals are observed in extracts from the same soil and when the soil is swollen with a more penetrating solvent(DMSO-d6)which is known to disassociate hydrogen bonds. These findings indicate that the soil aromatic moieties are protected in hydrophobic regions which are not water accessible. Furthermore, when the soil was amended with a herbicide (trifluralin), direct observations of interactions between the protons on a xenobiotic and the surrounding soil matrix were possible for the first time. HR-MAS promises to be a method that can be widely applicable to a range of complex environmental samples without the need for extraction, pretreatment, or purification.  相似文献   

2.
Elucidation of mechanistic interactions of anthropogenic chemicals is critical to understanding and eventually predicting their behavior in the environment Here, a recently developed technique, saturation transfer double difference (STDD) NMR spectroscopy is employed to determine the interactions of pesticides with humic acid (HA) at the molecular level. The degree of interaction at each NMR observable nucleus in the pesticide can be quantified in the form of an epitope map, which depicts the mechanism of the pesticide-HA interaction. Our results indicate that, at pH 7, halogen atoms (F and Cl) in water-soluble pesticides (diflufenzopyr, acifluorfen, and chlorsulfuron) play a dominant role in influencing binding to HA, whereas carboxyl groups likely play a secondary role when halogen atoms are also present in the molecule, as observed with diflufenzopyr and acifluorfen. However, when present on its own, the carboxyl group dominates in binding affinityto HA (e.g., imazapyr). Electronegativity and electron density appear to play a key role in the mechanism of binding and results suggest that polar bonds are the primary points of HA contact in the water soluble pesticides investigated. Likely interactions may include hydrogen bonding and dipole-dipole interactions.  相似文献   

3.
A rhamnolipid biosurfactant mixture produced by P. aeruginosa UG2 and the surfactant Triton X-100 were tested for their effectiveness of enhancing the desorption of trifluralin, atrazine, and coumaphos from soils. Sorption of both surfactants by the soils was significant and adequately described by the Langmuir-type isotherm. Values of maximum sorption capacity (Qmax) and Langmuir constant (Klang) did not correlate with the amount of soil organic matter. Our results indicate that clay surfaces play an important role in the sorption of surfactants. When surfactant dosages were high enough to reach soil saturation and maintain an aqueous micellar phase, pesticide desorption was only enhanced. At dosages below soil saturation, surfactants sorbed onto soil, increasing its hydrophobicity and enhancing the sorption of the pesticides by a factor of 2. Similar values of water-soil partition coefficients (Ksol*) for aged and fresh added pesticides to soils indicate that the aging process used did not significantly after the capability of either surfactant to desorb the pesticides. A model able to estimate equilibrium distributions of organic compounds in soil-aqueous-micellar systems was tested against experimental results. The determined organic carbon partition coefficients, Koc values, indicate that, on a carbon normalized basis, sorbed Rh-mix is a much better sorbent of pesticides than TX-100 or soil organic matter. These results have significant implications on determining the effectiveness of surfactants to aid soil remediation technologies.  相似文献   

4.
Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.  相似文献   

5.
Pesticide adsorption by soil clays can be dramatically influenced by the exchangeable cations present. Among the common exchangeable base cations in soils (Ca2+, Mg2+, K+, and Na+), K+-saturated clays frequently demonstrate the strongest affinity for pesticides. In the presence of multiple exchangeable cations in the system, we hypothesize that the magnitude of pesticide sorption to soil minerals is proportional to the fraction of clay interlayers saturated with K+ ions. To test this hypothesis, we measured sorption of three pesticides with different polarities (dichlobenil, monuron, and biphenyl) by homoionic K- and Ca-smectite (SWy-2) in KCl/CaCl2 aqueous solutions. The presence of different amounts of KCl and CaCl2 resulted in varying populations of K+ and Ca2+ on the clay exchange sites. The sorption of dichlobenil and, to a lesser extent monuron, increased with the fraction of K+ on clay mineral exchange sites. Ca- and K-SWy-2 displayed the same sorption capacities for nonpolar biphenyl. X-ray diffraction patterns indicated that at lower fractions of K+-saturation, exchangeable K+ ions were randomly distributed in clay interlayers and did not enhance pesticide sorption. At higher populations of K+ (vs Ca2+), demixing occurred causing some clay interlayers, regions, or tactoids to become fully saturated by K+, manifesting greatly enhanced pesticide sorption. The forward and reverse cation exchange reactions influenced not only K+ and Ca2+ populations on clays but also the nanostructures of clay quasicrystals in aqueous solution which plays an important, if not dominant, role in controlling the extent of pesticide sorption. Modulating the cation type and composition on clay mineral surfaces through cation exchange processes provides an environmental-safe protocol to manipulate the mobility and availability of polar pesticides, which could have applications for pesticide formulation and in environmental remediation.  相似文献   

6.
Roles of acetone-conditioning and lipid in sorption of organic contaminants   总被引:1,自引:0,他引:1  
Sorption of phenanthrene and 1-naphthol by a peat soil (PS) and its humic acid fractions (HAs) and humin (HM) was examined. Both phenanthrene and 1-naphthol consistently had decreased isotherm nonlinearity in the order PS > HA1 (first fraction) > HA7 (seventh fraction), due to decreased heterogeneity of soil organic matter (SOM). High isotherm nonlinearity of HM was attributed to the condensed structure of SOM in it. Acetone-conditioning increased sorption affinity and isotherm nonlinearity of HAs and HM for phenanthrene, and the conditioning effect was more pronounced at low solute concentrations. However, sorption of 1-naphthol by PS, HAs, and HM was insignificantly affected by acetone-conditioning, suggesting that 1-naphthol could have disparate distribution of sorbed sites from phenanthrene due to their structure and hydrophobicity difference. Lipid removal further increased sorption of phenanthrene and 1-naphthol by acetone-conditioned PS, HAs, and HM, due to increased accessibility of high-energy sites in SOM. Nonlinearity of phenanthrene and 1-naphthol also increased after lipid removal from the acetone-conditioned sorbents. In 1-naphthol- and phenanthrene-lipid competitive sorption systems, lipid had strong competition with phenanthrene, whereas 1-naphthol exhibited cooperative sorption with lipid on lipid-free PS, HAs, and HM, again showing the different sorption characteristics between phenanthrene and 1-naphthol.  相似文献   

7.
Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.  相似文献   

8.
Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14C-labeled herbicide was incubated for 7 weeks with four soils under anoxic conditions. As determined by radiocounting, trifluralin binding ranged between 10 and 53% of the initial 14C depending on the soil tested. 19F NMR analyses of the methanol extracts and different fractions of the extracted soil suggested that bound residue formation largely involved reduced metabolites of the herbicide. A 2,6-diamino product of trifluralin reduction with zero-valent iron (Fe-TR), and the standard of a 1,2-diaminotrifluralin derivative (TR6) formed covalent bonds with fulvic acid (FA), as indicated by the 19F NMR spectra taken periodically over a 3-week contact time. At short contact times, TR6 and Fe-TR formed weak physical bonds with FA, as the respective spin-lattice relaxation times (T1) decreased from the range 1300-1831 ms for TR6 or Fe-TR analyzed in the absence of FA to the range 150-410 ms for TR6/FA or Fe-TR/FA mixtures. In general, the results indicated that trifluralin immobilization involved a variety of mechanisms (covalent binding, adsorption, sequestration), and with time it became increasingly stable.  相似文献   

9.
A new dynamic plant uptake model is presented to characterize health impacts of pesticides applied to food crops, based on a flexible set of interconnected compartments. We assess six crops covering a large fraction of the worldwide consumption. Model estimates correspond well with observed pesticide residues for 12 substance-crop combinations, showing residual errors between a factor 1.5 and 19. Human intake fractions, effect and characterization factors are provided for use in life cycle impact assessment for 726 substance-crop combinations and different application times. Intake fractions typically range from 10?2 to 10?? kg(intake) kg(applied)?1. Human health impacts vary up to 9 orders of magnitude between crops and 10 orders of magnitude between pesticides, stressing the importance of considering interactions between specific crop-environments and pesticides. Time between application and harvest, degradation half-life in plants and residence time in soil are driving the evolution of pesticide masses.We demonstrate that toxicity potentials can be reduced up to 99% by defining adequate pesticide substitutions. Overall, leafy vegetables only contribute to 2% of the vegetal consumption, but due to later application times and higher intake fractions may nevertheless lead to impacts comparable or even higher than via the larger amount of ingested cereals.  相似文献   

10.
A standardized quantitative approach was developed to reliably elucidate the effect of increasing soil moisture on pesticide mineralization. The mineralization of three aerobically degradable and chemically different 14C-labeled pesticides (isoproturon, benazolin-ethyl, and glyphosate) was studied under controlled conditions in the laboratory at an identical soil density of 1.3 g cm(-3). The agricultural soils used are characterized by (i) large variations in soil texture (sand content 4-88%) and organic matter content (0.97-2.70% org. C), (ii) fairly diverse soil-water retention curves, and (iii) differing pH values. We quantified the effect of soil moisture on mineralization of pesticides and found that (i) at soil water potential < or = -20 MPa minimal pesticide mineralization occurred; (ii) a linear correlation (P < 0.0001) exists between increasing soil moisture (within a soil water potential range of -20 and -0.015 MPa), and increased relative pesticide mineralization; (iii) optimum pesticide mineralization was obtained at a soil water potential of -0.015 MPa, and (iv) when soil moisture approximated water holding capacity, pesticide mineralization was considerably reduced. As both selected pesticides and soils varied to a large degree, we propose that the correlation observed in this study may be also valid in the case of aerobic degradation of other native and artificial organic compounds in soils.  相似文献   

11.
In both forest and agricultural soils, plant derived cuticular materials can constitute a significant part of soil organic matter. In this study, the sorption of nonpolar (naphthalene and phenanthrene) and polar (phenol and 1-naphthol) aromatic organic pollutants to aliphatic-rich cuticularfractions of green pepper (Capsicum annuum) (i.e., bulk (PC1), dewaxed (PC2), nonsaponifiable (PC3), nonsaponifiable-nonhydrolyzable (PC4), and dewaxed-hydrolyzed residue (PC5)) were examined to better understand the influence of polarity and accessibility on their sorption behavior. The polarity and structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state 13C NMR. The sorption isotherms fit well to the Freundlich equation. Sorption of the tested organic compounds to PC4, which had more condensed domains, was nonlinear (Freundlich N(s) values of 0.766-0.966). For naphthalene and phenanthrene, the largest sorption capacity (K(oc)) occurred in PC5, which contained the highest paraffinic carbons (63%) and the lowest polarity: approximately 2 and aproximately 3 times higher than the respective carbon-normalized octanol-water partition coefficient (K(owc)), indicating that PC5 was a powerful sorption medium. For phenol and 1-naphthol, the largest K(oc) values occurred in PC4 with polar aromatic cores: approximattely 17 and approximately 7 times higher than the respective K(owc), suggesting that PC4 was much more accessible and compatible to polar aromatic pollutants than nonpolar aromatic pollutants. There was little or no correlation of K(oc) with either aliphatic or aromatic components of the tested aliphatic-rich sorbents because the polarity and accessibility apparently played a regulating role in the sorption of organic contaminants.  相似文献   

12.
Sorption of pyrene, phenanthrene, naphthalene, and 1-naphthol by original (lignin, chitin, and cellulose) and coated biopolymers was examined. Organic carbon normalized distribution coefficients (Koc) of all compounds by the original biopolymers followed the order lignin > chitin > cellulose, in line with the order of their hydrophobicity. Hydrophobicity of structurally similar organic compounds is the main factor determining their ability to occupy sorption sites in biopolymers. Specific interactions (e.g., H-bonding) between 1-naphthol and chitin or cellulose increased its ability to occupy sorption sites. Lignin coating resulted in an increased Koc for phenanthrene (13.6 times for chitin and 6.9 times for cellulose) and 1-naphthol (6.0 times for chitin and 3.7 times for cellulose) relative to the acetone-treated chitin and cellulose. Also, these coated biopolymers had increased isotherm nonlinearity, due to the newly formed condensed domains. An increase in phenanthrene and 1-naphthol sorption by lignin-coated biopolymers as compared to chitin and cellulose was contributed by the newly created high-energy sites in condensed domains and coated lignin. Results of this study highlight the importance of the structural makeup of biopolymers in controlling the sorption of hydrophobic organic compounds.  相似文献   

13.
We examined pesticide contamination in sediments from depressional playa wetlands embedded in the three dominant land-use types in the western High Plains and Rainwater Basin of the United States including cropland, perennial grassland enrolled in conservation programs (e.g., Conservation Reserve Program [CRP]), and native grassland or reference condition. Two hundred and sixty four playas, selected from the three land-use types, were sampled from Nebraska and Colorado in the north to Texas and New Mexico in the south. Sediments were examined for most of the commonly used agricultural pesticides. Atrazine, acetochlor, metolachlor, and trifluralin were the most commonly detected pesticides in the northern High Plains and Rainwater Basin. Atrazine, metolachlor, trifluralin, and pendimethalin were the most commonly detected pesticides in the southern High Plains. The top 5-10% of playas contained herbicide concentrations that are high enough to pose a hazard for plants. However, insecticides and fungicides were rarely detected. Pesticide occurrence and concentrations were higher in wetlands surrounded by cropland as compared to native grassland and CRP perennial grasses. The CRP, which is the largest conservation program in the U.S., was protective and had lower pesticide concentrations compared to cropland.  相似文献   

14.
The structural composition of soil organic matter (SOM) was determined in twenty-seven soils with different vegetation from several ecological zones of Australia and Pakistan using solid-state CPMAS 13C NMR. The SOM was characterized using carbon types derived from the NMR spectra. Relationships were determined between Koc (sorption per unit organic C) of carbaryl(1-naphthylmethylcarbamate) and phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O,O-diethyl phosphorodithioate) and the nature of organic matter in the soils. Substantial variations were revealed in the structural composition of organic matter in the soils studied. The variations in Koc values of the pesticides observed for the soils could be explained only when variations in the aromatic components of SOM were taken into consideration. The highly significant positive correlations of aromaticity of SOM and Koc values of carbaryl and phosalone revealed that the aromatic component of SOM is a good predictor of a soil's ability to bind such nonionic pesticides.  相似文献   

15.
A survey has been made of some of the physical, chemical and biological interactions that influence the persistence and availability of herbicides applied to the soil. The most important physical interaction between herbicides and soil is considered to be sorption of the pesticide to the soil surface. This influences not only the rate of leaching of the herbicide through the soil and its movement in the vapour phase, but also the rate of chemical and microbial decomposition. An attempt has been made to construct a model for the persistence of some hydrolytically sensitive herbicides to enable their persistence in soils to be deduced from hydrolysis rate-constants and adsorption data. The formulation used and the method of application of the herbicide to the soil can also have an important influence on its persistence.  相似文献   

16.
The sorption behavior of four hydrophobic organic contaminants (HOCs) (i.e., phenanthrene, naphthalene, lindane, and 1-naphthol) by three types of polymers namely polyethylene (PE), polystyrene (PS), and polyphenyleneoxide (PPO) was examined in this work. The organic carbon content-normalized sorption coefficients (K(oc)) of phenanthrene, lindane, and naphthalene by PEs of same composition but distinct physical makeup of domains increased with their crystallinity reduction (from 58.7 to 25.5%), suggesting that mobility and abundance of rubbery domains in polymers regulated HOC sorption. Cross-linking in styrene-divinylbenzene copolymer (PS2) created substantial surface area and porosity, thus, K(oc) values of phenanthrene, lindane, naphthalene, and 1-naphthol by PS2 were as high as 274.8, 212.3, 27.4, and 1.5 times of those by the linear polystyrene (PS1). The K(oc) values of lindane, naphthalene, and 1-naphthol by polar PPO were approximately 1-3 orders of magnitude higher than those by PS1, and PPO had comparable sorption for phenanthrene but higher sorption for naphthalene and 1-naphthol than PS2. This can be a result that a portion of O-containing moieties in PPO were masked in the interior part, while leaving the hydrophobic domains exposed outside, therefore demonstrating the great influence of the spatial arrangement of domains in polymers on HOC sorption.  相似文献   

17.
The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.  相似文献   

18.
摘 要:目的 调查安徽某草莓基地土壤中的农药残留状况,评估其农药残留风险。方法 采用超高效液相色谱串联质谱法和气相色谱串联质谱法,对采集的205份土壤样品进行农药残留检测分析,并用环境标准值计算法评估草莓基地农药残留风险。结果 该地区205个土壤样品中共有179份样品检出农药残留,检出率87.31%;检出的有30种农药,检出最多的是咯菌腈、腐霉利和苯醚甲环唑3种杀菌剂,检出率分别为83.90%、87.32%、87.32%,对土壤质量安全及种植作物构成一定危害风险。对于表层土(0~20 cm)范围,其浅表层土(0~10 cm)与深表层土(10~20 cm)中的农药残留也有差异,浅表层土(0~10 cm)农药残留浓度高于深表层土(10~20 cm)。结论 该草莓基地由于杀菌剂等农药的长期使用,对土壤质量安全构成风险隐患,需要对高风险农药加强关注。  相似文献   

19.
In this study, the sorption behavior of a wide variety of N-, S-, and O-heterocyclic compounds (NSOs) to reference soils (Eurosoils 1-5) was characterized by a soil column chromatography (SCC) approach. The major goal was to identify the compound specific and environmental factors influencing sorption processes. The sorption of S- and O-heterocyclic compounds (thiophene, benzothiophene, 5-methylbenzo[b]thiophene, benzofuran, 2-methylbenzofuran, and 2,3-dimethylbenzofuran) was generally controlled by nonspecific interactions with soil organic carbon (OC). With regard to non-ionizable N-heterocyclic compounds, pyrrole, 1-methylpyrrole, and pyrimidine were hardly retarded in any soil. The sorption of indole, 2-hydroxyquinoline, and benzotriazole was dominated by specific interaction (e.g., complexation of surface-bound cations) rather than partition to soil OC. The sorption of ionizable N-heterocyclic compounds (quinoline, isoquinoline, quinaldine, 2-methylpyridine, and pyridine) can be described by a conceptual model including partitioning to soil OC, cation exchange, and an additional sorption process (probably surface complexation of the neutral species). Cation exchange was usually the dominant mechanism in the sorption of ionizable compounds if the protonated fraction of the compound exceeded 5%. Otherwise, surface complexation became dominant. Soil pH was the most important factor influencing the sorption of ionizable NSOs. Our study suggests that a fairly precise assessment of sorption in most soils can be expected for N-, S-, and O-heterocyclic compounds if the three sorption mechanisms are taken into accountwhere appropriate. Deviations from this behavior indicated special cases where additional soil specific properties (e.g., accessible surface, CEC, charge density) need to be considered such as for 2-methylpyridine and pyridine sorption to Eurosoil 1.  相似文献   

20.
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were performed on Agave americana cutan and tomato cutin to examine the interactions between a hydrophobic pollutant, pyrene, and cuticular material. Variable-temperature NMR experiments show that cutan, an acid- and base-resistant cuticular biopolymer, undergoes the characteristic melting behavior of "polyethylene-like" crystallites, while the tomato cutin does not. The melting point of A. americana cutan was found to be approximately 360 K, which is consistent with the thickness of the polyethylene crystallites of 30-40 methylene units. Sorption models predict that the sorption behavior of hydrophobic pollutants should depend on the phase of the cuticular material. 13C NMR experiments on labeled pyrene were performed. The 13C T1 of pyrene decreases significantly from that of crystalline pyrene upon sorption to both tomato fruit cutin and A. americana cutan, indicating that the pyrene is mobile upon sorption. Magic angle spinning experiments at low spinning frequencies (2-4 kHz) provided the chemical shift anisotropy (CSA) parameters delta, the anisotropy, and eta, the asymmetry parameter, for crystalline and sorbed pyrene. For crystalline pyrene, two types of crystallographically distinctive pyrenes were observed. The first had delta = -97.4+/-0.5 ppm and eta = 0.934+/-0.006, while the second had delta = -98.1+/-0.5 ppm and eta = 0.823+/-0.008. After sorption to cutan, these CSA parameters were found to be delta = -78.9+/-5.3 ppm and eta < 0.70 independent of the length of time since completion of the sorption procedure. In tomato cutin, the CSA parameters were found to be dependent upon the time since completion of the sorption procedure. One and one-half months after sorption, delta was found to have a value of -30.4 ppm < delta < 0.0 ppm and eta was undeterminable, while after 22 months these values become delta = -80.0 +/-3.3 ppm and eta< 0.42. These changes in the CSA parameters demonstrate that upon sorption of pyrene to cutan, the pyrene undergoes anisotropic motion, while in cutin pyrene initially can tumble isotropically, but after 22 months this motion also becomes anisotropic. 2D heteronuclear correlation experiments indicate that pyrene is in close proximity to aliphatic cuticular materials after sorption. This work is directly relevant toward understanding the physical and chemical mechanisms of pollutant sorption to soil organic matter and, thus, help develop improved sorption models and pollution remediation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号