首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为有效改善沥青混凝土路面半刚性基层与面层间的粘结效果,增加沥青路面强度和耐久性,本文利用改造后的万能剪切仪来对透层油的性能进行试验研究。首先,通过分析影响沥青路面半刚性基层与面层间固结效果的众因素,选取乳化沥青的种类和用量两个因素研究层间粘结性能,并构建了剪切模型进行试验验证。得到不同乳化沥青透层抗剪强度值,由此确定了SBR改性乳化沥青为其中粘结性较好的透层。继续对不同用量下的SBR透层进行验证,得到用量和剪应力的相互关系。最后,运用滑移模型进行结果分析:该沥青最低用量值为0.36 kg/m~2,最佳用量值为0.96 kg/m~2。为沥青混凝土面层与半刚性基层间固结、稳定、联结、防水性能的提高提出了一种新的思路。  相似文献   

2.
通过力学计算和室内试验研究了层间接触条件对沥青路面高温性能的影响.应用BISAR计算了不同层间接触条件下的沥青面层剪应力,通过直剪试验测定了洒布不同粘层材料的复合马歇尔试件的抗剪强度,采用车辙试验测定复合式车辙板的DS和总变形量.研究结果表明:完全光滑的层间接触条件大幅提高了沥青面层的最大剪应力,并加速了沥青面层发生剪切破坏而出现车辙;粘层提高了层间抗剪强度,不同的粘层材料对层间接触条件的改善效果不同;高抗剪强度的层间接触能提高复合式车辙板的高温性能;采取适当措施改善层间接触条件,对提高沥青路面的高温性能具有重要意义.  相似文献   

3.
针对气候特点对新疆地区沥青路面层间处治进行了气候分区,结合各分区温度与降雨特征分别推荐了层间处治沥青材料.综合温度、面层厚度、纵坡与车辆载重等因素对层间工作状态的影响,提出了新疆地区半刚性基层沥青路面层间工作状态分级及典型影响因素取值.基于渗透试验和层间抗剪试验,得到了不同透层材料、不同洒布量下的渗透深度与抗剪强度,确定了不同透层材料最佳洒布量.采用直剪试验,得到了不同碎石洒布量、不同沥青材料、不同沥青洒布量下基面层间抗剪强度,确定了封层碎石与沥青的最佳洒布量.同时,研究了风吹砂对基面层间结合状况的影响,分别得到了干燥与饱水状态下,风吹沙污染量与基面层间抗剪强度的回归函数.  相似文献   

4.
岩土体材料形成条件特殊,与地域因素联系紧密,其力学性质一般具有很明显的地域性,而抗剪强度指标是岩土工程设计中的重要力学参数。通过概率统计的方法对三峡库区58组粉质黏土抗剪强度参数进行概率统计分析,利用χ2检验法进行拟合检验,得到土体抗剪强度参数c、φ的概率分布形式,分析表明:抗剪强度参数c、φ值分别服从对数正态分布和正态分布特征,可为三峡库区滑坡的地质灾害治理防治工作提供参考。  相似文献   

5.
应用BISAR软件计算了不同层间接触条件下的沥青面层剪应力,通过直剪试验测定了洒布不同粘层材料的复合马歇尔试件的抗剪强度,并采用车辙试验测定复合式车辙板的DS和总变形量.研究结果表明:完全光滑的层间接触条件大幅提高了沥青面层的最大剪应力,加速沥青面层发生剪切破坏而出现车辙;粘层提高了层间抗剪强度,不同的粘层材料对层间接触条件的改善效果不同;高抗剪强度的层间接触能提高复合式车辙板的高温性能.  相似文献   

6.
城市公交港湾路面结构应力分析   总被引:1,自引:1,他引:0  
针对北京公交港湾沥青路面严重的早期破坏,通过建立三维有限元模型,对大容量公交进出公交港湾时对路面结构施加的变速移动荷载进行加载模拟.数值分析结果表明,在车辆制动过程中,路面竖向位移、层间剪应力均有所增大,且路面结构层中剪应力正负交替变化;在动荷载的作用下,沥青结构层中最大剪应力的位置发生变化,最容易发生剪切破坏的部位是沥青面层内及面层与基层结合处;进站加速度增大使路面层间剪应力明显增大,竖向位移略有增大.因此,在城市公交港湾路面结构设计时,不仅要提高路面结构层的整体强度,更应重视面层及层间的抗剪强度.  相似文献   

7.
采用经典摩擦理论及摩尔-库伦理论对沥青路面层间的直剪试验结果进行分析,并引入灰色关联理论,对沥青路面层间抗剪强度的影响因素进行研究,结果表明:层间摩擦系数等于层间内摩擦角的正切值,层间最大静摩擦力与滑动摩擦力的差值构成了层间的粘聚力;竖向荷载、温度及粘结层材料参数对沥青路面层间抗剪强度有不同程度的影响;当粘结材料为乳化沥青时,影响因素按照重要程度依次排序为:竖向荷载乳化沥青固含量乳化沥青洒布量温度,试验中4个因素与沥青路面层间抗剪强度的灰色关联度均大于0.6,说明竖向荷载、乳化沥青固含量、乳化沥青洒布量及温度对沥青路面层间抗剪强度均有重要影响。  相似文献   

8.
桥面防水层电动剪切仪测试技术与误差分析   总被引:3,自引:0,他引:3  
防水层的抗剪性能是决定铺装结构稳定性和长期防水功效是否能得以发挥的重要因素,然而,国内外均没有用于防水层与桥面混凝土和沥青面层层间抗剪强度现场检测的仪器。研制了可对实验数据进行实时采集处理的桥面防水层专用电动剪切仪,详细介绍了电动剪切仪的结构功能、操作步骤、技术指标、数据处理方法,并对仪器设计和使用过程中可能存在的误差进行分析,认为所研发仪器可有效地检测桥面沥青铺装和沥青路面结构的层间抗剪强度。  相似文献   

9.
高等级公路沥青路面剪应力分布研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于线弹性层状体系理论,采用路面结构有限元法,主要探讨高等级公路沥青路面剪应力的分布规律及其影响因素。数据分析结果表明:在各结构层材料性能和厚度允许选择范围内,最大剪应力均分布在距路表3 cm深度范围内;影响剪应力大小的最主要的因素是沥青层模量、泊松比和基层模量。通过计算数据与试验测试抗剪强度对比分析可知:对于普通三层沥青层面层结构,上面层和中面层应进行剪应力验算,且验算时需找到准确的计算点位才能得到各层内最大剪应力值。  相似文献   

10.
级配碎石混合料及其基层的抗剪性能   总被引:1,自引:0,他引:1  
为了研究级配碎石基层在路面结构中能否发生剪切破坏,对级配碎石基层材料抗剪强度及在路面结构中的剪应力进行了对比研究;应用高精度静三轴仪对选定的级配碎石进行振动成型和击实成型的抗剪强度研究,揭示不同成型方法对抗剪强度的影响,采用有限元分析典型路面结构在标准荷载作用下剪应力的大小,明确级配碎石基层发生剪切破坏的可能性;三轴试验表明振动成型级配碎石过渡层的抗剪强度为0.17 MPa,击实成型的为0.14 MPa,振动成型试样比击实的抗剪强度提高20%;剪应力分析表明:水平荷载在级配碎石基层中产生的最大剪应力在0.04~0.05 MPa;级配碎石的抗剪强度是最大结构剪应力的3.5倍,级配碎石基层在高等级沥青路面结构中产生剪切破坏的可能性很小.  相似文献   

11.
高等级公路沥青路面剪应力分析与应用   总被引:3,自引:0,他引:3  
基于线弹性层状体系理论,采用路面结构有限元法,探讨高等级公路沥青路面剪应力的分布规律、影响因素及其评价方法。通过选取不同路面结构参数,包括各结构层厚度、模量和泊松比等,在不同的点位,利用BISAR程序进行力学计算和分析,提出了沥青路面抗剪强度的确定和评价方法。研究结果表明:在不考虑各结构层材料性能和厚度时,最大剪应力均分布在距路表3cm深度范围内;影响剪应力的最主要因素是沥青层模量、泊松比和基层模量;对于普通3层沥青层面层结构,上面层和中面层应进行剪应力验算,下面层可根据实际情况确定是否进行验算;验算时,需找到准确的计算点位才能计算出各层内最大剪应力。  相似文献   

12.
为了研究级配碎石基层在路面结构中能否发生剪切破坏,对级配碎石基层材料抗剪强度及在路面结构中的剪应力进行了对比研究;应用高精度静三轴仪对选定的级配碎石进行振动成型和击实成型的抗剪强度研究,揭示不同成型方法对抗剪强度的影响,采用有限元分析典型路面结构在标准荷载作用下剪应力的大小,明确级配碎石基层发生剪切破坏的可能性;三轴试验表明振动成型级配碎石过渡层的抗剪强度为0.17 MPa,击实成型的为0.14 MPa,振动成型试样比击实的抗剪强度提高20%;剪应力分析表明:水平荷载在级配碎石基层中产生的最大剪应力在0.04-0.05 MPa;级配碎石的抗剪强度是最大结构剪应力的3.5倍,级配碎石基层在高等级沥青路面结构中产生剪切破坏的可能性很小.  相似文献   

13.
为沥青路面层间抗剪切设计及施工提供参考,针对现有沥青路面的结构层组合形式,研究了不同级配结构层组合类型沥青路面层间机械摩阻强度。首先,基于分形理论建立沥青路面层间机械摩阻强度理论模型,并分析了不同级配结构层组合形式的沥青路面机械摩阻强度特性;其次,为验证该理论模型的可靠性,进行了不同级配结构层组合类型的沥青路面剪切试验。结果表明:层间接触表面形态受沥青混合料级配影响较大,其中,级配组合类型为AC-13/AC-16的接触面积最大,然后依次为AC-13/AC-20、AC-16/AC-20;在相同荷载作用下,层间机械摩阻强度受上、下层级配结构层组合类型影响较大,级配结构层组合类型为AC-13/AC-20时,层间机械摩阻强度最大,然后依次为AC-16/AC-20、AC-13/AC-16;在温度为20℃时,层间机械摩阻强度理论值与试验值较接近,表明在该条件下沥青路面层间机械摩阻强度理论模型具有一定的可靠性与适用性。  相似文献   

14.
沥青路面早期裂缝的出现,降低了道路的使用年限.为了研究使用状态下沥青路面表面裂缝的扩展行为,基于断裂力学理论,应用有限元软件ABAQUS,分析了移动荷载下裂缝应力强度因子K11的变化规律,研究了不同裂缝开裂深度和不同的层间摩擦接触状况下的路面响应,并探讨了面层厚度、面层和基层模量等路面结构参数对裂缝扩展的影响.为半刚性基层沥青路面的合理化设计和沥青路面的维修养护提供一定的理论参考.  相似文献   

15.
针对桥面铺装层层间抗剪强度和粘结强度不足而出现推移、松散和拥包等病害,结合甘肃地区气候及环境特征,采用自行改装设计的斜剪仪,研究了剪切角度为15°、30°和40°时不同粘层油种类、不同粘层油用量、不同温度和不同剪切速率对沥青混凝土桥面铺装组合结构层抗剪切性能的影响,并对比分析了不同剪切角度和不同级配类型沥青混凝土铺装结构的抗剪性能。结果表明:采用SBS改性沥青作为粘层油时的层间抗剪强度最好、普通沥青次之、乳化沥青作为粘层油的抗剪强度较低;粘层油用量存在最佳用量值,且最佳SBS改性石油沥青粘层油最佳用量为1.2kg/m2左右;AC-13C+AC-20C沥青混凝土加铺结构抗剪性能优于AC-16C+AC-20C,且抗剪强度随剪切角度的增大而降低,随温度的升高而降低,随剪切速率的增大而增大。  相似文献   

16.
沥青路面基面层间界面加强技术研究   总被引:1,自引:0,他引:1  
为提高沥青路面基面层间界面粘结效果,从基层表面处治技术与新型层间封层技术两方面出发,提出了“两油一料”的新型层间施工工艺,通过剪切试验及拉拔试验,对比研究了表面未处治、表面拉毛和刻槽3种基层处理方式以及“一油一料”和“两油一料”两种层间封层技术不同组合下的层间粘结效果.结果表明:基层表面拉毛和刻槽处治能显著加强基面层间粘结效果;相同基层表面处治方式下,采用“两油一料”比采用“一油一料”的基面层间抗剪性能与抗拉性能平均分别提高13.0%、35.6%.从而为沥青路面基面层间加强技术的选择提供了参考.  相似文献   

17.
超薄磨耗层沥青混合料使用性能试验研究   总被引:2,自引:0,他引:2  
通过试验比较了密级配AC-13C、半开级配Novachip Type C、开级配OGFC-13这3种磨耗层的抗滑、渗水、构造深度等使用性能。以SBS改性乳化沥青及改性乳化沥青NovabondTM为粘层材料,AC-13C、Novachip Type C、OGFC-13作为磨耗层,AC-20C为中面层,制作10cm复合型车辙试件,采用路面结构层材料剪切试验仪对试件进行直剪试验,分析了粘层种类、用量、磨耗层类型对层间抗剪强度的影响。结果显示,不同面层类型存在粘层油最佳撒布量,此时层间抗剪强度达到最大。对同一种面层类型,改性乳化沥青NovabondTM较SBS改性乳化沥青粘结能力要好。在相同粘层油的最佳撒布量下,不同路面结构抗剪能力依次是Novachip Type C>AC-13C>OGFC-13。  相似文献   

18.
目的 为了研究路面结构的抗剪能力与面层厚度及基层模量之间的关系.方法 基于有限元法计算得到裂尖的位移场,进而计算出应力强度因子,分析了裂尖应力强度因子随基层模量、面层厚度变化的变化规律.结果 当面层厚度在8~18cm之间变化时,裂尖的Ⅱ型裂纹应力强度因子先增大后减小,说明不能单纯的靠增加路面厚度来增强路面的抗剪能力;虽然增加基层模量可以提高路面的整体强度,但同时应力强度因子也变大,从而会降低面层的抗剪能力.结论 当基层模量变大时,应力强度因子也变大,虽然增加基层模量可以提高路面的整体强度,但同时也会影响到路面的抗剪能力,所以在保证路面整体强度的基础上适当柔化基层是必要的.  相似文献   

19.
采用MTS伺服试验机,进行45°动态斜剪试验,研究不同层间处理方法与面层混合料类型对层间剪切疲劳寿命的影响.试验研究表明:采用铣方式处理的试件在抵抗动态剪切疲劳时效果最好,刻痕处理试件次之,光面处理试件最差;面层使用SMA-10较AC-20的抗动态剪切疲劳效果更佳;界面材料AWP-2000F和SBS改性沥青对界面层间动...  相似文献   

20.
受诸多因素的影响,边坡失效概率不是定值,实际上是具有一定置信度水平的置信区间分布的.以无限边坡为例,借助Bootstrap法判定抗剪强度参数最优边缘分布函数,采用Copula函数描述抗剪强度参数间互相关性,构建抗剪强度参数的联合分布函数,并从分布特性的角度研究了抗剪强度参数联合分布函数、边坡稳定性设计控制标准及参数变异水平对边坡失效概率的影响.研究表明:针对本算例,五类联合分布函数所得失效概率相近,其中No.16函数所得失效概率相对较大,Gaussian函数所得结果相对较小, Copula加权组合函数所得失效概率精确度相对较高;随着边坡设计控制标准的提高,则边坡稳定安全系数取值不断增加,边坡失效概率逐渐减小且趋近于0;边坡失效概率均随δ_φ的增加而增加,随δ_c的增加呈"增加-减小-增加"的趋势,并且边坡失效概率对内摩擦角φ的变异水平较黏聚力c更为敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号