首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于COMSOL MULTIPHYSICS平台建立三维热仿真模型,定量分析不同工作电流条件下的温度分布。结果表明:单体及模块最高温度集中在中心区域,温度呈辐射状由内向外逐渐降低。在换热系数20 W/(m2·K)作用下,低于8C倍率放电可使单体电池工作在正常温度范围,而使三并五串电池模块最高温度在正常范围,放电电流应低于5C;在5C倍率下放电结束后,荷电状态(SOC)为0模块中心电池最高温度达到322.88 K,比同倍率绝热条件下单体最高温度仅低2.81 K。  相似文献   

2.
采用不同的浇注温度和浇注时间进行了汽车散热器用A356-CeMn新型铝合金试样的铸造,并进行了显微组织、散热性能和力学性能的测试与分析。结果表明:随浇注温度的升高和浇注时间的延长,试样的显微组织逐渐改善,晶粒细化、均匀,热导率和抗拉强度先增大后减小,散热性能和力学性能先提升后略有下降。和690℃浇注温度的性能相比,720℃铸造时的热导率增大12 W/(m·K),抗拉强度增大22 MPa;和6 s浇注时间的性能相比,浇注时间10 s时的热导率增大11 W/(m·K),抗拉强度增大17 MPa。  相似文献   

3.
结晶辊的温度场分布对薄带连铸凝固过程有重要影响。采用商业软件ProCAST模拟了低碳钢薄带双辊连铸凝固过程,并在此基础上考虑了结晶辊转动、水冷强度及结晶辊涂层种类对薄带连铸凝固过程的影响。结果表明:当水冷对流换热系数为250 000 W/(m~2·K)时,铸辊转动10 s后,其温度场基本达到了稳定状态,薄带凝固厚度从热循环开始时的1. 004mm减小至稳定状态的0. 976 mm;当水冷对流换热系数从5 485 W/(m~2·K)→40 040 W/(m~2·K)→250 000 W/(m~2·K)逐渐增加时,铸辊外表面最高温度从686. 4℃→586. 7℃→556. 4℃逐渐降低,薄带连铸整体温度场的温度不断降低;导热系数相近的涂层对薄带连铸凝固过程的影响不大。  相似文献   

4.
当A356合金流经由底部反向水流冷却的斜板时将发生部分凝固。在板面上将连续形成柱状枝晶。由于强制对流作用,这些枝晶将被剪切成等轴晶并被出口的半固态浆体冲刷。板面冷却速度可为高质量半固态浆体提供需要的凝固过程,而板面长度可提供必需的剪切过程。将半固态浆体在金属模具中冷却以制备具有理想微观组织的半固态锭坯。此外,对半固态铸造锭坯进行热处理以提高表面质量,并对半固态铸造和热处理后锭坯的微观组织进行对比。研究板面长度和板面冷却速度对斜板冷却锭坯凝固过程和显微组织的影响。三种板面长度(200,250,300 mm)分别对应不同传热系数(1000,2000和2500 W/(m2K))。最佳板面长度和相应的传热系数分别为250 mm和2000 W/(m2K),在此条件下,由于没有浆体附着在板面上,锭坯具有细小的球状组织。  相似文献   

5.
研究了熔渗法制备的Mo-Cu复合材料从350~20 K的导热率变化.结果表明,该材料在350 K的导热率为200W/(m·K).随着温度降低,导热率降低,降温至200 K后导热率升高,20 K时导热率达305W/(m·K).将样品用浓硝酸腐蚀去除铜组分后观察微观组织发现,Mo在熔渗制备过程中已烧结成骨架结构,这种结构的形成是低温材料导热率升高的原因.  相似文献   

6.
文中设计了模铸实验并采用喷水冷却方式来模拟AZ31镁合金半连铸一冷区传热过程,得到了用于反求界面换热系数的温度变化曲线。采用反热传导法求解了不同冷却水量下熔体-模具间的界面换热系数,并分析了冷却水量对界面换热系数的影响。结果表明,随着冷却水量的增加,界面换热系数峰值与冷却水量呈正相关,冷却水量由20 L/min提高到60 L/min时,换热系数峰值从1 425.8 W/(m2·K)增加到2 727.5 W/(m2·K),且高冷却水量的换热系数峰值出现在低的温度;随着冷却水量的增加,从铸坯边部到中心的凝固组织均匀性明显提高。  相似文献   

7.
铸轧薄带冷却采用气雾多喷嘴具有冷却时间短,冷却均匀等特点。通过实验研究了双喷嘴气雾冷却的换热特性。研究的因素包括水压、气压、喷嘴间距及高度、钢板温度等。结果表明,气压越大,钢板的表面传热系数越大,表面传热系数的增量在1000~1200 W/(m~2·℃·bar);水压越大,钢板的表面传热系数同样变大,表面传热系数增量在400W/(m~2·℃·bar);喷嘴间距越大、喷嘴高度越大,钢板的表面传热系数越小,喷嘴间距增大时,表面传热系数增量为-10W/(m~2·℃·mm),喷嘴高度增大时,表面传热系数增量在-4~-6 W/(m~2·℃·mm)。钢板温度每升高1℃,表面传热系数增量为-2~-4 W/(m~2·℃~2)。可以得出:气压对表面传热系数的影响最显著,水压以及喷嘴间距、高度次之,钢板温度对传热系数的影响最小。  相似文献   

8.
采用简单的真空抽滤方法,制备了石墨烯/氮化硼/石墨烯的三明治薄膜并对其导热性能进行分析。结果表明,三明治薄膜的面内导热系数达53.09 W/(m·K),较纯石墨烯薄膜(21.5 W/(m·K))高,将在散热领域有潜在应用。  相似文献   

9.
微通道散热器具有优良的换热性能,在日益高度集成化的电子器件中有着广泛的应用。设计并加工了一种锯齿形通道和蛇形通道组成的锯齿形微通道散热器。蛇形微通道部分于流体的均匀流动,锯齿形微通道部分主要用于热交换。以去离子水作为冷却工质,在恒定温度75℃加热锯齿形微通道散热器的底面,实验研究了迎流角分别为30°和45°的两种锯齿形微通道散热器。实验结果表明,在流速为10 g/min~45 g/min时,30°及45°迎流角的锯齿形微通道散热器最大的平均传热系数分别为1 170.87 W/(m~2·K)和768.98 W/(m~2·K),最小热阻分别为0.001 5 m~2·K/W和0.002 2 m~2·K/W。同时,30°迎流角的锯齿形微通道散热器的压降小于45°迎流角下的锯齿形微通道散热器,但45°迎流角下的锯齿形微通道散热器具有更好地温度均匀性。因此,30°迎流角下的锯齿形微通道散热器具有更优良的传热性能。  相似文献   

10.
正近期,成都天智轻量化科技有限公司和西南交通大学交通运输装备轻量化研究所团队开发成功了一款名为LITMAT-HTC-ZX61M的镁合金,简写为ZX61M。ZX61M镁合金热挤压状态的热导率高达165 W/(m·K),抗拉强度为270 MPa,伸长率高达30%。其热导率与高热导率的铝合金相当,高于绝大多数铝合金,甚至高于青铜[(32~153) W/(m·K)]和黄铜[(70~109) W/(m·K)],而镁合金器件的散热速度大约是铝合金器件  相似文献   

11.
通过电导率和拉伸性能测试,并结合金相显微镜和扫描电镜组织观察等分析测试手段,研究了合金元素Fe、Mn和Zr对高导热Al8Si0.8Mg0.5Cu合金的拉伸性能、热导率和微观组织的影响。结果表明,铸态合金中,当锰含量(质量分数,下同)由0.1%增加至0.3%时,粗大针状含Fe相减少而块状含Fe相增多,拉伸强度增加42.5 N/mm2,而热导率降低8 W/(m·K);当铁含量由0.1%增加至0.5%时,铸态合金中针状含Fe相的数量和尺寸明显增大,拉伸强度提高7.8 N/mm2,而热导率降低3 W/(m·K);加入0.1%Zr后,针状含Fe相的数量略有增加,拉伸强度降低18.8 N/mm2,而热导率降低7 W/(m·K)。当铸态合金在200℃4 h人工时效后,随锰含量增加,拉伸强度增加28.5N/mm2,而热导率降低了3 W/(m·K);随铁含量增加,拉伸强度提高11.9 N/mm2而热导率降低3 W/(m·K);加入0.1%Zr后,拉伸强度降低11.5 N/mm2而热导率降低了4 W/(m·K)。  相似文献   

12.
研究了α-Al2O3含量分别为99%和92%的氧化铝陶瓷(以下分别简称99和92氧化铝陶瓷)在室温和低温下(293,195和77K)的力学和热学性能。结果表明:两种氧化铝陶瓷的抗弯强度变化规律相同且变化幅度都较小,说明玻璃相的存在并没有对氧化铝的低温强度造成显著影响;99氧化铝的断裂韧性随温度降低线性升高,而由于晶界玻璃相的存在,92氧化铝的断裂韧性在77K时有所降低。热学性能测试表明,两种氧化铝的热导率随温度的变化规律一致。99和92氧化铝在20K时的热导率分别为4.1和1.7W/(m·K),远远小于不锈钢的热导率14.7W/(m·K)。因此,如果采用氧化铝陶瓷替代不锈钢作为超导绝缘支撑材料可以大大降低系统的漏热,提高超导磁体的稳定性。  相似文献   

13.
以Mg-RE系、AZ91D和ADC12合金为研究对象,室温下测定Mg-RE合金的化学成分,热扩散系数、密度,并根据NKR准则计算其比热容和热导率。高温环境下测试了合金的拉伸性能,并研究室温至300℃之间材料的温度变化曲线。结果表明,室温和高温环境下,稀土镁合金拉伸性能良好,在250℃时高温抗拉强度比AZ91D合金提高71%。稀土镁合金热导率高达101 W/(m·K),比AZ91D合金提高40%;容热能力为1.778J/(cm3·K),比AZ91D合金降低了7.0%。温度测试中,稀土合金升温和降温速度最快,平衡阶段传递的热量最多,说明稀土镁合金具有良好的导热散热性能。  相似文献   

14.
在改进Hamasaiid模型的基础上提出了新的金属型铸造界面换热系数峰值hmax预测模型,该模型引入表面张力参数,定量研究其对界面换热的影响。采用A356铝合金金属型重力铸造实验对模型进行验证。结果表明:反求计算的hmax约为5944 W/(m2·K),采用Hamasaiid模型计算的hmax约为7987 W/(m2·K),误差约为34%;新模型未考虑表面张力时计算的hmax约为6228 W/(m2·K),误差约为5%,考虑表面张力时计算的hmax约为5992W/(m2·K),误差约为1%。新模型计算精度有较大提升,计算结果与反求结果具有很好的一致性,表面张力对计算精度有一定影响。  相似文献   

15.
利用放电等离子烧结技术制备了宽带隙三元半导体化合物CuIn5Se8,并对其热电性能进行了研究。物相分析表明,化合物为单相CuIn5Se8,带隙宽度为1.13eV,比In2Se3合金的低。电学性能测试结果表明,随温度升高Seebeck系数绝对值从370.0μV·K1降低到263.0μV·K1,而电导率则随温度迅速增大。在818K时,其电导率达到最大值2.921031·m1,热导率为0.50W·K1·m1,最高热电优值ZT值达到0.33。  相似文献   

16.
采用改进型Jominy样品精确测定7B50合金厚板喷水淬火时样品内部的温度场(冷却曲线),并利用JMat Pro软件获得7B50合金热物性参数随温度的变化关系。以反传热原理为基础,采用ProCAST有限元软件计算得到喷水淬火时淬火表面的综合表面换热系数的变化规律。结果表明:喷水淬火时,距淬火表面6 mm处,淬火敏感温度区间(420~230°C)内的平均冷却速率为45.78°C/s;喷水淬火开始0.4 s时,综合表面换热系数达到峰值69 kW/(m~2·K),此时对应的淬火表面温度为160°C;喷水淬火初期,淬火表面中心的冷却曲线上出现"温度平台"现象,平台对应的温度范围为160~170°C,持续时间约为3 s;在温度平台持续期间,淬火表面的换热机制从核态沸腾阶段转变为对流换热阶段。  相似文献   

17.
《热加工工艺》2021,50(7):111-114
采用不同的挤压温度对Mg-4Al-1.5Mn-0.5V镁合金大规格散热器试件进行了挤压试验,并进行了散热性能、腐蚀性能和显微组织的测试与分析。结果表明:在360℃挤压温度下试样的散热性能和腐蚀性能均最佳。在此温度下挤压试样的散热性能最大,导热系数为149 W/(m·K);腐蚀电位最正,为-0.905 V;平均晶粒尺寸最小,为8.6μm。Mg-4Al-1.5Mn-0.5V镁合金大规格散热器的挤压温度优选360℃。  相似文献   

18.
以一定化学计量比均匀混合的Si、Ge、B混合粉末为原材料,使用放电等离子烧结(SPS)一步法合金化制备了p型Si80Ge20Bx(x=0.5,1.0,2.0)合金热电材料,并对样品的组成、微观形貌、热电性能进行了表征与分析。结果表明,放电等离子烧结过程实现原位合金化并烧结为块体材料。随着B掺杂量的增加,电导率明显提升,热导率显著下降,当温度为950K时,热导率为1.79W/(m·K)。在1050K时,ZT值达到了0.899。球磨和掺杂的协同作用使得SiGe合金基体内产生不同类型的缺陷特征而散射不同波长的声子,导致硅锗合金热导率的降低。  相似文献   

19.
试验研究了变质元素Sr和Ca对新开发的高导热AlSi12Fe铸造铝合金导热性能的影响,以及工业批量化生产AlSi12Fe铸造铝合金铸锭的组织和性能,并进行了该合金压铸件应用于通信机箱的可行性研究。结果表明:Sr和Ca均能通过对共晶硅的变质作用来提高AlSi12Fe铸造铝合金的热导率,且Sr的改善作用比Ca的更明显,当添加w(Sr)=0.03%0.05%时效果最优;AlSi12Fe铸造铝合金锭横截面各个位置的电导率有所差异,这主要与冷却速率有关,最先冷却凝固位置的α-Al、共晶硅和Fe相更为细小,因而电导率和热导率更好;采用AlSi12Fe铸造铝合金可顺利压铸1.8 mm厚、60 mm高的复杂薄壁通信机箱散热翅片,机箱压铸态的热导率为160 W/(m·K),经时效热处理后热导率可达172 W/(m·K)。  相似文献   

20.
李建超  王宝峰 《铸造技术》2012,33(5):569-571
通过试验法测定了铸造过程中φ100 mm的铝合金铸锭近表面的动态温度,采用逆向法计算出其水冷段的换热系数.结果表明,随着铸锭表面温度的降低,换热系数逐渐增大;在温度由400℃降至130℃的过程中,换热系数急剧增大,在130℃左右时达到最大,其最大值大约为23000 W/(m·K);当温度继续降低时,铸锭表面换热系数迅速减小.最后分析了换热系数变化的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号