首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using both numerical and experimental methods, we studied the effect of coil configuration of pulsed magneto-oscillation (PMO) on distribution of electromagnetic field, flow field and solidification structure with the same pulse current parameters in Al ingots. We designed and constructed three types of coils: surface pulsed magneto-oscillation, hot-top pulsed magneto-oscillation (HPMO) and combined pulsed magneto-oscillation (CPMO). PMO treatment refined the solidification structure in all the ingots. The configuration of the PMO, however, introduced differences in magnetic field intensity, electromagnetic force, Joule heat, flow field, equiaxed grain zone, grain size and growth direction of columnar grains. The largest equiaxed grain zone was found in CPMO treated ingot, and the smallest grain size was found in both HPMO and CPMO treated ingots. Numerical simulation indicated that difference in electromagnetic field and flow field resulted in differences in solidification structure. HPMO is more advantageous over others for large ingot production.  相似文献   

2.
The solidification structures of alloy 800H fabricated with and without linear electromagnetic stirring (L-EMS) were investigated. The results show that the solidification structure of the alloy can be obviously affected by the forced convection in melt caused with L-EMS decreases from 3.5 mm to 2.3 mm, by L-EMS. The average size of equiaxed grains of the alloy and the ratio of equiaxed grain increases from 5% to 43% compared with that without L-EMS. The microstructure of the alloy without L-EMS is composed of fine equiaxed dendrites in the outermost layer and columnar dendrites in other areas, whereas that with L-EMS contains equiaxed dendrites, columnar dendrites and cross dendrites. In addition, the mechanism of dendrite fragment drift was proved by examining the composition change of the main alloying elements in the dendrite trunks at different solidification stage using an electron probe micro-analyzer (EPMA).  相似文献   

3.
基于DEFORM-3D有限元平台建立了TA15钛合金大型复杂整体构件预锻成形过程的有限元模型,研究了成形参数对预锻成形过程中变形体组织演化和等轴α相晶粒尺寸的影响规律。结果表明:随着变形的进行,等轴α相晶粒发生细化;在950~980℃范围内变形时,随着变形温度的升高,初生α相晶粒尺寸逐渐增大,在980℃条件下变形时,预锻件整体范围内晶粒尺寸波动较大;随着变形速率的增加,初生α相晶粒尺寸减小;在0.5和1.0mm/s条件下成形时,温度对晶粒尺寸影响比较小,而在0.1mm/s条件下变形时,随着温度的升高,晶粒长大比较严重;随摩擦因子的增大,平均晶粒尺寸有所减小,整个锻件晶粒尺寸分布的不均匀性增加。  相似文献   

4.
脉冲磁致振荡(PMO)凝固均质化技术是通过促进形核并形成“结晶雨”细化凝固组织、提高铸坯均质化的一项原创技术。生产实践表明,该技术对提高连铸坯等轴晶率、降低偏析具有显著作用。将PMO与电磁搅拌(EMS)进行优化组合,利用EMS的搅拌作用,将PMO形成的“结晶雨”均匀分布于铸坯心部,消除等轴晶区偏心问题,从而大幅度提高铸坯组织对称性和均质化效果稳定性。结果表明,应用PMO-EMS组合调控技术可显著提高铸坯均质化水平,以轴承钢GCr15和齿轮钢20CrMnTi为例,等轴晶区对称性明显增加,偏析指数则可以分别控制在1.04和1.05以内。  相似文献   

5.
A novel in-situ synthesized Fe-Ti-N master alloy was employed as a grain refiner for refining of the 409L ferritic stainless steel solidification structure. Two groups of experiments have been carried out to test the grain refinement performance of the Fe-Ti-N master alloy. In one group, 2 wt% of the Fe-Ti-N master alloy has been added into 409L ferritic stainless steel melts with various temperatures just before casting. In the other group, 409L ferritic stainless steel melts with 2 wt% Fe-Ti-N master alloy added at 1803K were held for various times before casting. It was found that high melt temperature resulted in a lower proportion of equiaxed grains and coarser structures. As the holding time increased, the proportion of the equiaxed grain zone decreased quickly. However, the proportion of the equiaxed grain zone re-increased when the holding time was extended longer than extreme points. The mechanisms of these experimental phenomena have been analyzed in terms of thermodynamics.  相似文献   

6.
通过拉伸试验、扫描电镜、X射线衍射仪和EBSD技术研究固溶加热速率与Al?Mg?Si?Cu合金力学性能、显微组织及织构的关系.实验结果表明,固溶加热速率与力学性能、显微组织及织构的关系是非单调的.随着加热速率的增加,强度变化取决于拉伸方向;加工硬化指数n先减小,后增加;塑性应变比r值先增加,后减小,最后又增加.加热速率...  相似文献   

7.
铝合金电流强化激光焊接焊缝组织及性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用电流强化激光焊接方法对3.0 mm厚的2219-T6铝合金板材进行堆焊,研究了电流对激光焊缝宏观和微观组织、气孔缺陷以及力学性能的影响.试验发现,引入电流后,焊缝区的晶粒发生明显细化,促使粗大的柱状晶转变为细小的等轴晶;而且消除了激光焊缝中央存在的羽毛状晶.与激光焊接相比,电流强化激光焊接焊缝中的气孔明显减少,接头...  相似文献   

8.
This article discusses the effect of temperature field on the Pulse Magneto-Oscillation (PMO) induced solidification refinement of pure aluminiurn to provide more information for the industrial application of the PMO solidification technology. The temperature field is altered mainly by applied variable cooling conditions and pulse parameters. Experimental results show that the refinement effect in the case of full sand mould applied is weakened with the decreasing of cooling rate, however, in the alternative case, the sand mould whose sand bottom was replaced by a graphite block is favorable to the survival of equiaxed nucleus. The refinement mechanism is discussed in terms of the relationship between temperature field and the formation process of solidified structure.The formation or survival of nucleus depends on both temperature field and Joule heat produced by PMO, both low pulse frequency and high pulse current were experimentally confirmed to be effective; and PMO was demonstrated high potential in industrial application.  相似文献   

9.
刘芳  张璐云 《铸造》2012,61(3):285-290
脉冲磁致振荡可以细化金属晶粒,为了研究其作用机理,采用ANSYS有限元模拟软件对脉冲磁致振荡下纯铝凝固磁场与流场分布进行了数值模拟.模拟结果显示,由于电磁趋肤效应,线圈中脉冲电流只在熔体表面感应产生电磁力,且随时间出现指向内部的压力与指向外部的拉力交替变化,沿径向有指向熔体顶部与底部交替变化.交变电磁力可以振荡熔体表面率先析出的晶核而使之游离,增大熔体形核率.同时感应电磁力迫使熔体产生流动,会利于晶核的均匀分布与温度场、浓度场的均匀化.  相似文献   

10.
Pulse magneto-oscillation (PMO) was developed as a novel technique to refine the solidification structure of pure aluminium.Its grain refining mechanism was proposed.The PMO refinement mechanism is that the nucleus falls off from the mould wall and drifts into the melt under the action of PMO.The solidification structure of Al melt depends on the linear electric current density,and also the discharge and oscillation frequencies.The radial pressure of PMO sound wave is the major factor that contributes to the migration of nucleus into the melt.  相似文献   

11.
机械振动对纯Al晶粒细化及凝固收缩的影响   总被引:1,自引:0,他引:1  
研究了振动场对纯Al晶粒细化和凝固收缩的影响,并着重进行理论分析。实验结果表明:振动能明显细化晶粒,改善收缩。随着振动的加强,纯Al中心的等轴晶区逐渐增大,边缘部位的柱状晶区逐渐减小,当振击力达到81.87N时整个试样端面全部变为等轴晶。理论分析认为:振动引起的强烈冲击和搅拌作用使金属液产生晶粒游离、增殖、快速冷却是晶粒细化和收缩改善的根本原因。  相似文献   

12.
The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104 μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

13.
为了研究电磁搅拌作用对激光熔凝熔池凝固过程的影响,采用有限体积法对施加磁场前后激光单道动态熔凝TA15钛合金过程进行三维磁-热耦合数值模拟。研究了磁场对激光熔池流场、熔凝单道及其周边基材温度分布、固液界面处温度梯度和凝固速度的影响,并采用试验手段对模拟结果进行了验证。模拟结果表明:电磁搅拌作用使激光熔池最大流速增加了约20%,对流加剧促进了熔池热交换作用,使其最高温度下降,固液分界面处温度梯度大幅降低,凝固速度小幅增大,从而有利于熔池顶部组织发生柱状晶-等轴晶转变(CET)。试验结果显示施加磁场后熔凝层顶部有等轴晶组织生成,且随着远离磁场中心,电磁力增大,等轴晶区有扩大趋势。试验结果和模拟结果一致性较好。  相似文献   

14.
Distributions of electromagnetic fields and induced forced flow inside a metal melt are crucial to understand the grain refinement of the metal driven by pulsed magneto-oscillation (PMO). In the present study, PMO-induced electromagnetic fields and forced flow in Ga-20wt%In-12wt%Sn liquid metal have been systematically investigated by performing numerical simulations and corresponding experimental measurements. The numerical simulations have been confirmed by magnetic and melt flow measurements. According to the simulated distribution of electromagnetic fields under the application of PMO, the strongest magnetic field, electric eddy current and Lorentz force with inward radial direction inside the melt are concentrated adjacent the sidewall of cylindrical melt at the cross section of middle height of coil. As a result, a global forced flow throughout the whole cylindrical column filled with Ga-20wt%In-12wt%Sn melt is initiated with a flow structure of two pair of symmetric vortex ring. The PMO-induced electromagnetic fields and forced flow in Al-7wt%Si melt have been numerically simulated. The contribution of electromagnetic fields and forced flow to the grain refinement of Al-7wt%Si alloy under the application of PMO is discussed. It indicates that the forced flow may play a key role in the grain size reduction.  相似文献   

15.
通过改变脉冲电流参数和铸锭的冷却速度,研究了脉冲电流细化纯铝的规律.试验结果表明:在较快的冷却速度下脉冲电流峰值对组织细化程度的影响明显强于脉冲频率的作用.当频率超过200Hz后电流的热效应导致细化效果反而变差,同时电流的作用存在一个极限值,当电流峰值达到125A之后细化效果明显增强,但是继续提高参数,细化效果并没有随之提高.在较慢的冷却速率下,由于增加了脉冲电流的有效作用时间以及晶核迁移的时间,易于获得等轴晶组织.  相似文献   

16.
研究了不同铸造速度条件下截面尺寸为300 mm?800 mm的大规格AZ31镁合金板坯的宏观偏析及组织。结果表明,偏析区域出现在距离锭坯表面20 mm ~ 30mm范围内,板坯心部偏析小。宏观组织可分为表面激冷区,粗大的柱状晶区和内部等轴晶区。低速铸造可减轻宏观偏析,随铸造速度增加,整体晶粒尺寸先增大后减小,表面粗晶区宽度减小。高速铸造时晶粒尺寸最小,但不均匀。合理的铸造速度为32 mm/min。  相似文献   

17.
针对锻态高锰孪生诱导塑性钢利用Gleeble3500型热模拟试验机,通过设置不同峰值温度(850,950,1 050,1 150,1 250℃)对焊接接头热影响区的各个区间进行了焊接热模拟,采用电子背散射衍射系统、扫描电子显微镜和X射线衍射仪等手段分析了锻态母材经过焊接热作用后组织和性能的变化.结果表明,热作用前后孪生诱导塑性钢组织均为等轴晶粒的全奥氏体组织,晶粒尺寸随峰值温度的上升先减小后增加,但都低于母材;热影响区的拉伸性能均优于母材,主要原因是发生了细晶强化;冲击韧性随峰值温度的变化与晶粒尺寸变化趋势一致,说明晶粒尺寸对采用的孪生诱导塑性钢冲击韧性有关,晶粒尺寸越细,冲击韧性越差.冲击断口的韧窝底部发现有AlN颗粒.  相似文献   

18.
Four compositions of alloys were designed. They were Cu-2% In, Cu-7% In, Cu-11% In and Cu-23% In(mass fraction). These alloy specimens were prepared by metal mold. By means of microstructure observation,macrostructure observation and electron probe analyzing, microstructures and macrostructures of the specimens were analyzed by comparison method. Microstructure component and relationship between structure and composition of alloys were investigated. The results show that with increasing indium content, the grain changes from columnar one to equiaxed one, the equiaxed grain increases, the columnar grain zone decreases and the grain size becomessmall. With increasing indium content, the growth way changes from planar one to dendritic one. Peritectic reaction plays inhibiting role on the growth of dendrite and affects the orientation of dendrite. Indium content has influence on lattice constant of Cu solid solution  相似文献   

19.
研究了K4169高温合金在各种工艺条件下及向熔体中加入复合细化剂时的晶粒组织。结果表明,降低浇注温度和加入复合细化剂可以明显细化冷凝后基体的晶粒和提高铸件断面等轴晶的比例。在通常的浇注温度1400℃下加入复合细化剂。对合金熔体进行或不进行过热处理时,可使圆柱锭的晶粒分别细化至ASTM1.7级和ASTM3.2级;断面等轴晶的比例分别达96%和99%以上。当浇注温度为1420℃、加入复合细化剂并对合金熔体进行过热处理时。可使圆柱锭晶粒细化至ASTM M10.5级,断面等轴晶的比例达90%以上。提出了晶粒细化的机理并对晶粒细化后断面等轴晶比例增大的现象进行了分析。  相似文献   

20.
A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application.The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting.The results show that the equiaxed grains are determined by the pouring temperature of the melt,the cooling rate and the rotation speed of the mold.With the decrease in pouring temperature,the fraction of the equiaxed grains in the transverse section of the ingot increases and the average length of columnar grain decreases.When the pouring temperature is confined below 1,250℃,complete equiaxed grains can be obtained.Based on the optimal centrifugal casting processing,the tensile strength of the developed alloy ingot with complete equiaxed grains reaches to 810 MPa and 435 MPa at room temperature and 500℃,respectively,which is 14% and 110% higher than that of common commercial QAl10-4-4 alloy.The wear rate of the developed alloy is 7.0 × 10-8 and 3.8 × 10-7 mm3?N-1?mm-1 at room temperature and 500℃,respectively,which is 5 times and 39 times lower than that of QAl10-4-4 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号