首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
工业纯钛高温拉伸断裂极限   总被引:1,自引:0,他引:1  
拉伸断裂极限值是预测零件高温裂纹的主要依据。为了研究工业纯钛在高温拉伸下的断裂极限,采用理论模型和试验相结合的方法,通过GFL(Gleeble fracture limit)试验测得工业纯钛在不同温度下的真应力-应变曲线,并利用真应力-应变曲线求得工业纯钛的断裂极限值,分析了温度和应变速率对断裂极限值的影响。结果表明,温度和应变速率对断裂极限值有较大影响。温度升高使断裂极限增加,在应变速率为0.1 s-1下随着温度从800℃升高到1000℃,断裂极限值从1.798增加到2.343;在900℃相同温度下,随着应变速率从0.01 s-1的提高到1 s-1,断裂极限值从2.496降低到1.745。  相似文献   

2.
研究了2种变形处理方式下的超细晶Cu-Cr-Zr合金从室温到600℃的拉伸性能、断口微观组织特征及其断裂机制.结果表明:经4道次等径弯曲通道挤压(ECAP)+时效+4道次ECAP变形处理的合金(No.1试样)的抗拉强度随拉伸温度的升高而降低,室温时,合金抗拉强度为577.17 MPa,延伸率为14.6%;在300℃开始发生动态再结晶软化,抗拉强度迅速减小,到600℃时抗拉强度仅为59.12 MPa.经过8道次ECAP+时效变形处理的合金(No.2试样),室温抗拉强度为636.71 MPa,延伸率为12.1%;从400℃开始析出相对晶界的钉扎作用开始逐渐减弱,抗拉强度大幅降低,600℃时的抗拉强度为65.20 MPa.No.2试样比No.1试样具有更好的室温性能和热稳定性.2种方式处理下合金延伸率随拉伸温度的升高而升高,在高温下都表现出超塑性.高温拉伸断口微观形貌为大量密集、深入的韧窝,其高温断裂机制为微孔聚集的韧性断裂.  相似文献   

3.
利用Gleeble-1500D热模拟试验机对锻态工业纯钛TA1进行高温拉伸试验,其变形温度为800~1050℃,变形速率为0.01~1 s-1,并对工业纯钛TA1进行变形抗力研究,分析了变形温度、应变速率和变形程度对变形抗力的影响。结果表明,变形抗力曲线主要以动态回复、再结晶软化为主要特征。温度对变形抗力的影响是以工业纯钛TA1相变点为界限。800和1000℃时,随应变速率增大,变形抗力先增大后减小;变形温度为850、900和1050℃时,变形抗力随应变速率增大而增大。变形抗力随变形程度增加,其变化呈两种趋势。  相似文献   

4.
研究了DD499单晶高温合金<111>取向700和900 ℃温度条件下光滑和缺口试样的高温旋转弯曲高周疲劳性能。结果表明:<111>取向DD499合金光滑试样的疲劳强度在700 ℃为355 MPa,在900 ℃时为400 MPa,其疲劳强度和缺口敏感性均随温度的升高而增大。<111>取向DD499合金两种温度光滑试样的疲劳断裂均为多源断裂,断裂机制均表现为沿最密排面{111}面的解理断裂特征;而缺口试样在700 ℃表现为沿缺口向中心扩展断裂,900 ℃表现为类似于光滑试样的断裂特征。  相似文献   

5.
研究了DD499单晶高温合金<111>取向700和900℃温度条件下光滑和缺口试样的高温旋转弯曲高周疲劳性能。结果表明:<111>取向DD499合金光滑试样的疲劳强度在700℃为355MPa,在900℃时为400MPa,其疲劳强度和缺口敏感性均随温度的升高而增大。<111>取向DD499合金两种温度光滑试样的疲劳断裂均为多源断裂,断裂机制均表现为沿最密排面{111}面的解理断裂特征;而缺口试样在700℃表现为沿缺口向中心扩展断裂,900℃表现为类似于光滑试样的断裂特征。  相似文献   

6.
对经挤压开坯的一种低密度铌合金分别在1000,1100,1200℃下进行了热轧,并利用光学显微镜、扫描电镜和场发射透射显微镜对试样的组织形貌进行了表征;对合金的室温和高温拉伸强度、延伸率进行了测试。结果表明:在1200和1100℃温度下热轧时,合金均具有优良的室温和高温性能,室温强度在600MPa以上,室温塑性大于12%,高温下的强度在80MPa以上,高温塑性大于30%,且随轧制温度升高,抗拉强度降低,塑性增大;而在1000℃下热轧时,室温和高温力学性能均较低,且室温拉伸断口表现为脆性断裂。  相似文献   

7.
在DDL50电子万能试验机上进行Mg-13Gd-4Y-2Zn-0.6Zr稀土镁合金不同温度试样的热拉伸试验,通过扫描电镜分析了试样的宏观断裂组织和微观组织。结果表明:随温度的升高,镁合金抗拉强度降低。在350℃时标准试样σ_b=115 MPa,在400℃时标准试样σ_b=59 MPa。当材料有缺口时,由于形成应力集中,材料的抗拉强度升高。在350℃时缺口R=5 mm试样σ_b=165 MPa,缺口R=20 mm试样σ_b=135 MPa。当温度不同,镁合金的断裂机制也不相同。原始尺寸对拉伸断裂机制也有较大影响。在同一温度下,随缺口半径的减少,断裂由韧性断裂逐步转变为解理断裂。缺口半径越小,应力集中越明显,越易形成脆性断裂。  相似文献   

8.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、单向拉伸及显微硬度测试等方法,研究了经室温90°ECAP变形工业纯钛1道次在400、500、600℃退火1h后的组织和性能.结果表明:当退火温度为400℃时,变形组织未发生明显变化,抗拉强度和显微硬度略有降低,伸长率增加;当退火温度高于400℃时,随着退火温度的升高,变形组织发生再结晶,晶粒尺寸增至12μm,工业纯钛的抗拉强度和显微硬度明显降低,伸长率显著提高.工业纯钛的拉伸试样断口均为韧窝型断口,韧窝随退火温度的降低而变得细小、均匀.  相似文献   

9.
利用真空扩散焊方法制备了铁中间层钛-钢扩散焊接头,并采用OM、SEM、EDS、XRD、显微硬度和拉伸试验方法,研究了铁中间层钛-钢扩散复合界面组织和性能。结果表明,在900~1050℃、30 min扩散条件下,Fe、Ti原子在界面处发生了互扩散;钛侧形成βTi+α-βTi+αTi组织,钢侧发生脱碳,铁中间层形成柱状晶组织;拉伸强度随扩散温度升高呈现先增加后减小的趋势,900℃、30 min扩散试样拉伸强度最高,达到260 MPa;拉伸断口具有粗糙断裂区、脆性断裂区及二次断裂区特征,并在断口上检测出TiC、FeTi和Fe2Ti相。  相似文献   

10.
对TA2工业纯钛进行2道次等径弯曲通道变形(ECAP),对变形后试样进行不同温度及不同保温时间的退火,并分别测量了显微硬度,并分析了400 ℃退火1、2、4、8 h试样横截面的显微硬度分布。结果表明:经过ECAP变形后,材料硬度增加显著;退火后,随着退火温度的升高,硬度逐渐降低;保温时间越长,硬度缓慢降低;600 ℃退火8 h后试样的硬度为1592 MPa,与初始工业纯钛硬度基本相同。另外,随着保温时间的增加,试样横截面硬度分布趋于均匀。  相似文献   

11.
铜中间层钛-钢扩散复合界面组织与性能   总被引:1,自引:0,他引:1  
利用真空扩散焊方法制备了铜中间层钛-钢焊接接头,并采用OM、SEM、EDS、显微硬度和拉伸试验方法,研究了铜中间层钛-钢扩散复合界面组织和性能。结果表明,Fe、Ti原子在界面处发生了互扩散,钛侧形成α-βTi+αTi或βTi+α-βTi+αTi组织,钢侧发生脱碳并形成柱状晶组织;拉伸强度随扩散温度升高呈现先增加后减小的趋势,950℃、30 min扩散试样拉伸强度最高,达到262 MPa;拉伸断口具有塑性断裂区与脆性断裂区特征,并在断口上检测出TiC相。  相似文献   

12.
退火工艺对冷轧工业纯钛带卷各向异性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
力学性能各向异性是影响工业纯钛板带材成形性能的主要因素之一。为制备低各向异性工业纯钛带卷,采用室温拉伸试验和电子背散射衍射技术表征了经不同工艺退火后冷轧工业纯钛的力学性能、显微组织和织构,分析了退火工艺对工业纯钛带卷力学性能各向异性的影响规律。结果表明,退火温度固定时,延长退火时间,TA1钛带纵向屈服强度降低程度大于横向,导致其各向异性升高,而退火超过一定时间后其各向异性趋于稳定,700 ℃时钛带纵横向屈服强度差值的稳定值为82 MPa,610 ℃时的稳定值为58 MPa;退火时间固定时,在所研究温度范围内,退火温度越高,钛带各向异性越显著。织构分析表明,延长退火时间或/和升高退火温度,TA1钛带的棱锥织构增强、基面织构减弱,导致室温拉伸时纵横向{1010}<1120>柱面滑移的施密特因子差值增大,从而表现出更明显的力学性能各向异性。  相似文献   

13.
测试了Al-14Cu-7Ce(质量百分数)铸造铝合金在室温至450℃内的高温短时拉伸性能,并采用扫描电镜分析不同温度下试样断口形貌和断裂行为.试验结果表明:温度低于200℃时,强度缓慢下降,且200℃下抗拉强度达到343.4 MPa;在200~450℃,强度迅速下降,但450℃下其抗拉强度仍能达到142.5MPa,表明合金具有良好的耐热能力.随着变形温度的升高,合金逐渐由脆性断裂转变为韧性断裂,在250℃下合金表现出混合断裂特征.此外,裂纹萌生都由Al8CeCu4相引发,在应力作用下形成裂纹源,并从Al8CeCu4相内部扩展导致开裂,之后裂纹扩展至基体并与前方裂纹相互连接,最终导致试样发生断裂.  相似文献   

14.
基于单向拉伸试验,研究了变形温度对TC4钛合金型材力学性能、微观组织和断口形貌的影响规律。结果表明:当拉伸速率1 mm/min时,随着温度的升高,TC4钛合金抗拉强度降低,由室温时的940 MPa降低至820℃时的183 MPa,降幅为80.5%。TC4钛合金的微观组织随温度的升高由魏氏组织向等轴组织转变,β相的体积分数从室温的15.4%增加到820℃的35.3%。试样的断裂方式由脆性断裂和韧性断裂的混合型断裂转变为韧窝聚合型延性断裂,最后变为韧性断裂。  相似文献   

15.
《上海金属》2021,43(1)
灰铸铁刹车毂在行车过程中因连续刹车导致温度快速升高而过早失效。采用高温拉伸试验机和室温拉伸试验机分别对灰铸铁试样进行室温和高温拉伸试验,利用光学显微镜和扫描电镜观察不同温度拉伸后试样的微观组织,研究了灰铸铁的微观组织演变规律及其对高温抗拉强度的影响。结果表明:当拉伸试验温度从室温升高到200℃时,石墨形态变化不大,珠光体片层间距增大,抗拉强度下降幅度不大;当温度升高到500和700℃时,石墨片有粗化的倾向,石墨团聚数量增加,珠光体片层间距明显增大,同时部分渗碳体片发生断裂、溶解,转变成细粒状结构。高温下灰铸铁微观组织的变化导致其抗拉强度明显下降,800℃时的抗拉强度仅为室温下的17.2%。  相似文献   

16.
将典型Ti14合金在半固态进行了1次锻造成形,对锻造试样进行拉伸,研究其室温和高温的力学性能,并对拉伸断裂机理进行了分析。结果表明:不同的半固态温度和变形量对锻造试样的力学性能有明显的影响,随着温度和变形量的提高,强度增大,塑性降低,在1050℃和75%变形量时,合金强度最高;高温拉伸与室温拉伸表现出相同的趋势。随着温度的升高,拉伸断口由典型的穿晶断裂转变为沿晶断裂和穿晶断裂的混合断裂。  相似文献   

17.
采用金相显微镜、扫描电镜、透射电子显微镜和室温拉伸测试,研究了挤压温度对6061-T6铝合金晶粒尺寸和力学性能的影响。结果表明:挤压温度400~525℃时,6061-T6铝合金平均晶粒尺寸随挤压温度的升高呈逐渐增大的趋势,挤压温度400℃时晶粒尺寸最小,为119.1μm。在400℃挤压的试样力学性能最佳,其抗拉强度和断后伸长率分别为330 MPa和19.8%。室温拉伸断口形貌分析表明,随着挤压温度的升高,合金断裂机制由韧性断裂转变为韧-脆混合型断裂。  相似文献   

18.
以热挤压态镍基粉末冶金高温合金FGH96为研究对象,研究该合金横向(垂直于挤压方向)和纵向(沿挤压方向)试样的显微组织及力学性能,分析断裂机制和变形后的显微组织。结果表明:FGH96合金横向及纵向试样均为无明显织构的等轴晶组织,且平均晶粒尺寸及γ'相体积分数基本一致。在应变速率1×10~(-4)s~(-1)时,横向和纵向拉伸试样抗拉强度在25~650℃温度区间内随温度升高缓慢降低,当温度高于650℃时,抗拉温度下降速率显著增加;且横向试样的抗拉强度低于相同实验条件下纵向试样的抗拉强度,差值为150~200 MPa;失效机制为从室温条件下的穿晶断裂转变为混合断裂模式,横向试样的转变温度为400℃左右,纵向试样的转变温度约为650℃;横向试样变形后,显微组织有高密度的位错缠结及层错;纵向试样拉伸断裂后,显微组织则主要为孪晶及位错与γ'相的交互作用。  相似文献   

19.
使用Gleeble-3800热模拟试验机在25~400℃温度范围内对AZ91D镁合金薄板拉伸试样以3种不同的应变速率分别进行了单向拉伸实验,研究了应变速率和温度对AZ91D镁合金薄板主要力学性能的影响,并分析了拉伸试样在不同温度下的断口形貌特征。研究结果表明:材料的流动应力会随着应变速率下降和温度上升而逐渐减小;在25~200℃温度范围内,流动应力下降并不明显,而当温度升高到250~400℃时,流动应力下降比较明显,并且当温度升高到350℃以上,材料出现了明显的稳态流动现象;当温度较高时,流动应力对应变速率的改变很敏感,流动应力随应变速率的降低显著降低;材料在高温时具有较好的塑性,材料的断裂方式为很明显的韧性断裂。  相似文献   

20.
热成形硼钢热、力及相变耦合关系   总被引:1,自引:0,他引:1  
对热成形硼钢进行高温拉伸及淬火实验.试验方法为:硼钢板材试样在奥氏体化(950℃)后保温5 min,然后在连续冷却的同时施加拉伸力,记录此过程中力、位移、膨胀量及温度的变化.试验结果表明,当应力小于某个值时,马氏体相变开始温度、转变速率材料常数及相变塑性系数基本不变;当应力在一定范围内变化时,上述物理量随应力的增加而增加;当应力大于某个值时,上述物理量趋于定值;当应力达到400 MPa时,马氏体相变开始温度达到565℃,提高了180℃左右.在分析上述物理量的变化规律与马氏体形核影响因素的基础上,发展了热成形硼钢相变过程中的热、力、相变耦合本构模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号