首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fas-mediated apoptosis has been shown to be mediated by the IL-1beta converting enzyme (ICE) pathway. To determine the relationship between ICE and its substrate IL-1beta, we examined six human cell lines for susceptibility to Fas-mediated apoptosis and Fas induction of ICE-like activity. The human B lymphoblastoid cell line SKW6.4 and the human T lymphoma cell lines Jurkat, CEM-6, H-9, and MOLT4 were susceptible to Fas-mediated apoptosis, whereas the human promyelocytic leukemia cell line HL-60 was resistant to Fas-mediated apoptosis. ICE mRNA was highly expressed in SKW6.4, H-9, and HL-60 cells, and ICE-like activity increased during Fas-mediated apoptosis in SKW6.4 cells. In contrast, IL-1beta mRNA was highly expressed only in HL-60 cells. Acetyl-Tyr-Val-Ala-Asp-chloromethylketone, a tetrapeptidyl inhibitor of ICE, prevented Fas-mediated apoptosis strongly in SKW6.4 and H-9 cells but weakly or marginally in other cells. To examine whether intracellular IL-1beta is a proteolytic substrate or an endogenous competitive inhibitor against other substrates for Fas-ICE-mediated apoptosis in SKW6.4 cells, we established precursor IL-1beta transfectant clones using SKW6.4 cells. We demonstrated that stably transfected SKW6.4 cells expressing precursor IL-1beta, but not cells transfected with the empty vector, exhibited resistance to Fas-mediated apoptosis due to competitive inhibition of ICE-like activity, which was associated with increased cleavage of precursor IL-1beta to mature IL-1beta. These results suggest that Fas-mediated apoptosis is mediated by ICE cleavage of proteolytic substrates other than IL-1beta and that IL-1beta is an endogenous inhibitor of Fas-mediated apoptosis.  相似文献   

3.
DNA viruses have evolved elaborate mechanisms to overcome host antiviral defences. In adenovirus-infected cells, programmed cell death (apoptosis) induced by the cytokine tumour necrosis factor (TNF) is inhibited by several adenovirus-encoded proteins. Occupation of the cell-surface receptor Fas, a member of the TNF-receptor superfamily that is expressed on most cell types, triggers apoptosis of that cell. Here we show that the adenovirus RID (for receptor internalization and degradation) protein complex, which is an inhibitor of TNF-induced apoptosis, mediates internalization of cell-surface Fas and its destruction inside lysosomes within the cell. Fas has not previously been shown to be internalized and then degraded. RID also mediates internalization of the receptor for epidermal growth factor, but it does not affect the transferrin receptor or class I antigens of the major histocompatibility complex. Removal of Fas from the surface of adenovirus-infected cells expressing RID may allow infected cells to resist Fas-mediated cell death and thus promote their survival.  相似文献   

4.
BACKGROUND: Apoptosis, or programmed cell death, can be mediated through an endogenous signaling pathway that emanates from a cell surface receptor known as Fas. Although best recognized for its role in the immune system, recent studies have also suggested a role for Fas in mediating apoptosis in the murine prostate. Little is known, however, regarding the role of Fas-signaling in the human prostate, and if this signaling pathway is abrogated in the development of prostate cancer (PC). METHODS: In the current study, seven human PC cell lines were evaluated for their sensitivities to Fas-mediated apoptosis, using both morphologic and flow cytometric methods. Fas expression by each cell line was quantitated by immunofluorescence, and gene expression of three putative inhibitory molecules was analyzed. RESULTS: The differential sensitivities of the cell lines to Fas-mediated apoptosis were found to correlate with the clinical stage of the parental tumors. Specifically, the three most sensitive cell lines were all derived from primary tumors, while the four most resistant cell lines were derived from distant metastases. Immunofluorescent analyses of the PC cell lines revealed that the observed resistance to apoptosis was not due to reduced expression of membrane-bound Fas. Likewise, this resistance did not correlate with increased gene expression of the inhibitory molecules FAP-1, ICE epsilon, and Ich-1S. CONCLUSIONS: Our results using established PC cell lines support previous studies with prostatic tissue specimens, and suggest that the normal, differentiated prostatic epithelium, as well as locally invasive PCs, have the potential to undergo Fas-mediated apoptosis. Conversely, these studies suggest that metastatic PCs have a reduced apoptotic potential that is mediated by a novel mechanism.  相似文献   

5.
Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.  相似文献   

6.
The products of the ras genes are known to regulate cell proliferation and differentiation; recently, they have been found to play a role in apoptosis. The expression of oncogenic p21(ras) in a number of cell types, including Jurkat (a human T lymphoblastoid cell line) and murine fibroblasts, makes the cells susceptible to apoptosis following suppression of protein kinase C (PKC) activity (PKC/Ras-mediated apoptosis). Engagement of Fas antigen, a potent effector of apoptosis, activates cellular p21(ras), which may be required for completion of the cell death program. To further investigate the role of p21(ras) in the regulation of apoptosis, the cellular mechanisms employed in these two apoptotic processes in which Ras activity is involved (PKC/Ras-related and Fas-triggered apoptosis), was explored. Increasing p21(ras) activity by expressing v-ras or by treatment with an antisense oligonucleotide to the GTPase-activating protein was found to accelerate the Fas-mediated apoptotic process in Jurkat and mouse LF cells. PKC/Ras-related apoptosis was associated with, and required, cell cycle progression, accompanied by the expression of the G1/S cyclins. In contrast, Fas engagement, although inducing a vigorous and PKC-independent activation of endogenous p21(ras), did not alter cell cycle progression, nor did it require such progression for apoptosis. Both the protein synthesis inhibitor cycloheximide and cyclin E antisense oligonucleotides partially abolished PKC/Ras-mediated apoptosis but had only a moderate effect on Fas-induced apoptosis. In contrast, the CED-3/interleukin-1beta-converting enzyme (ICE) protease inhibitor Z-VADfmk efficiently suppressed Fas-induced apoptosis and only marginally inhibited PKC/Ras-mediated apoptosis. Induction of both pathways resulted in activation of the Jun NH2-terminal kinase/JUN signaling system. These results suggest that different cell death programs, such as PKC/Ras-mediated and Fas-mediated apoptosis, may be interconnected via p21(ras) and perhaps Jun NH2-terminal kinase/JUN. In response to various death stimuli, p21(ras) may act as a common intermediate regulator in the transduction of apoptotic signals.  相似文献   

7.
The interaction between Fas ligand and Fas, both expressed on activated T cells, is the major pathway in the regulation of activation-induced cell death. However, activated T cells that express membrane Fas are initially resistant to anti-Fas-induced apoptosis and become susceptible only after proliferation in vitro. Since IL-2 is known to regulate activation-induced cell death, we studied the effect of IL-2 on anti-Fas-mediated apoptosis. Interference with the IL-2 pathway was achieved by 1) inhibition of cytokine synthesis using cyclosporin A or FK506, 2) neutralization of IL-2 by anti-IL-2 Ab, 3) inhibition of binding to IL-2R by CD25 mAb, and 4) blocking of IL-2R signaling by rapamycin. We show that Fas expression is independent of the IL-2 pathway, whereas Fas-mediated apoptosis does not develop in the presence of inhibitors of IL-2 production or signaling. While the addition of rIL-2 reversed the inhibitory effect of cyclosporin A and FK506, the addition of rIL-4, rIL-7, or rIFN-gamma did not, although these cytokines induced progression into the S phase of the cell cycle. Aphidicolin-treated activated T cells that do not progress into the S phase were susceptible to Fas-mediated apoptosis. Therefore, Fas-mediated apoptosis is controlled by signals generated by IL-2 in agreement with the reported alteration of apoptosis in mice deficient in IL-2 or IL-2R.  相似文献   

8.
The immune response in the central nervous system (CNS) involves microglial cells which represent intraparenchymal antigen-presenting cells (APC). To control immune effector mechanisms it may be required to induce apoptosis of APC and thereby limit reactivation of T cells that have invaded the CNS. In the present study we investigated the susceptibility of primary murine microglia and of the murine microglial cell line BV-2 to undergo Fas-mediated apoptosis. Whereas resting microglia are resistant to Fas ligand (FasL) treatment, induction of FasL-mediated apoptosis was achieved by treatment with TNF-alpha or IFN-gamma. The effect of these cytokines was paralleled by up-regulation of Fas expression and down-regulation of Bcl-2 and Bcl-xL but not Bax. Activation of microglia by TNF-alpha and IFN-gamma was also accompanied by increased amounts of mRNA for the apoptosis inhibitor FLIP, an effect which did not protect the cells from FasL-induced apoptosis. The FasL-induced cell death pathway in microglia involves reactive oxygen intermediates because the antioxidants N-acetylcysteine and glutathione interfere with induction of apoptosis. Surprisingly, microglia constitutively express FasL on the cell surface. However, blocking of endogenous Fas-FasL interaction with Fas-Fc fusion protein did not enhance the survival of microglia, excluding the possibility of suicide or fratricide mechanisms. By their expression of FasL and their TNF-alpha/IFN-gamma-dependent sensitivity to the pro-apoptotic effect of exogenous FasL, microglial cells may influence the course of T cell-mediated diseases of the CNS.  相似文献   

9.
10.
The Nef protein of HIV-1 binds to and induces apoptotic cytolysis of uninfected but activated human peripheral blood mononuclear cells (PBMC) and various cell line cells derived from CD4+ T, CD8+ T and B lymphocytes, macrophages, and neutrophils. The Nef-induced apoptosis also occurs with blood cells not expressing CD95 (Fas). The Nef-induced apoptosis as well as Fas-mediated apoptosis was inhibited by acetyl-Try-Val-Ala-Asp-CHO, an IL-1beta converting enzyme (ICE) inhibitor. On the other hand, serine/threonine protein kinase (PK) inhibitors, H-7, fasudil hydrochloride and M3, inhibited the Nef-induced apoptosis, and not the Fas-mediated one, without affecting the cell-binding activity of Nef and Nef-binding capacity of the activated cells. Preincubation of the cells with the drugs before being bound by Nef was required for the inhibition of apoptosis. These results suggest that the PK inhibitors specifically act on a cellular protein involved in the upper stream of signal transduction pathway of the Nef-induced apoptosis, which is different from the Fas-mediated pathway but meets it upstream of ICE. In addition, the drugs suppressed the cellular activation-associated cell surface expression of a putative Nef-binding protein in PBMC, although they had no influence on its expression in cell line cells. These findings suggest the feasibility of clinical use of the PK inhibitors to prevent the development of AIDS by inhibiting the Nef-induced apoptosis of uninfected blood cells.  相似文献   

11.
Fas (CD-95/APO-1) is a death receptor that initiates an apoptotic signal when activated by its ligand, FasL. Normal vascular endothelial cells are resistant to Fas-mediated apoptosis though they express both Fas and FasL. Oxidized low density lipoprotein (OxLDL) or lysophosphatidylcholine (LPC), a major component of OxLDL, induces endothelial cell suicide by sensitizing endothelial cells to Fas-mediated apoptosis. Here, we show that endothelial cell apoptosis by OxLDL and LPC-C16:0 was dose-dependent and correlated with down-regulation of FLICE-inhibitory protein (FLIP), an intracellular caspase inhibitor. FLIP down-regulation also occurred when endothelial cells were treated with toxic doses of LPC-C18:0 or minimally modified low density lipoprotein (LDL). In contrast, FLIP was not down-regulated by native LDL, acetylated LDL, LPC-C12:0, cholesterol, or 7-ketocholesterol, which are not toxic to endothelial cells. The cytotoxicity of oxidized lipids was reversed by transfecting endothelial cells with a FLIP expression plasmid. The results demonstrate, for the first time, FLIP regulation under conditions that lead to pathological tissue destruction.  相似文献   

12.
A poor response to Fas-induced apoptosis is evident in some multiple myeloma (MM) cell lines and primary cells. In this study, we have examined the possibility to increase the sensitivity to Fas-induced apoptosis by pretreatment of MM cells with interferon-gamma (IFN-gamma) or interferon-alpha (IFN-alpha). Both IFN-gamma and IFN-alpha markedly increased the Fas-induced apoptosis in all cell lines tested (U-266-1970, U-266-1984, and U-1958). In the U-266-1970 and U-1958 cell lines, pretreatment with either IFN-gamma or IFN-alpha also inhibited proliferation in a dose-dependent manner. In contrast, IFN-gamma activation of the Fas death pathway in the U-266-1984 cells was not accompanied by growth inhibition. Incubation with the IFNs increased the Fas antigen expression in one of three cell lines but did not alter the expression of Bcl-2 or Bax. The IFNs are important regulators of growth and survival in MM cells. Our results suggest that activation of Fas-mediated apoptosis is a novel mechanism by which the IFNs exert inhibitory effects on MM cells.  相似文献   

13.
Peripheral tolerance mechanisms normally prevent delivery of T cell help to anergic self-reactive B cells that accumulate in the T zones of spleen and lymph nodes. Chronic exposure to self-antigens desensitizes B cell antigen receptor (BCR) signaling on anergic B cells so that they are not stimulated into clonal expansion by CD4(+) T cells but instead are eliminated by Fas (CD95)-induced apoptosis. Because a range of BCR-induced signals and responses are repressed in anergic B cells, it is not known which of these are critical to regulate for Fas-mediated peripheral tolerance. Display of the costimulatory molecule, B7.2 (CD86), represents a potentially important early response to acute BCR engagement that is poorly induced by antigen on anergic B cells. We show here that restoring B7.2 expression on tolerant B cells using a constitutively expressed B7.2 transgene is sufficient to prevent Fas-mediated deletion and to trigger extensive T cell-dependent clonal expansion and autoantibody secretion in the presence of specific T cells. Dysregulated expression of B7.2 on tolerant B cells caused a more extreme reversal of peripheral tolerance than that caused by defects in Fas or Fas ligand, and resulted in T cell-dependent clonal expansion and antibody secretion comparable in magnitude to that made by foreign antigen-specific B cells. These findings demonstrate that repression of B7.2 is critical to eliminate autoreactive B cells by Fas in B cell-T cell interactions. The possible role of B7.2 dysregulation in systemic autoimmune diseases is discussed.  相似文献   

14.
Oxidized low density lipoproteins (OxLDL) promote chronic inflammatory responses in the vasculature that give rise to atherosclerotic plaques. Fas ligand (FasL) is naturally expressed on the vascular endothelium where it can induce apoptosis in Fas-expressing immune cells as they enter the vessel wall. Although vascular endothelial cells are normally resistant to Fas-mediated cell death, OxLDL were shown to induce apoptosis in cultured endothelial cells and endothelium of arterial explants by a process that could be inhibited with Fas L neutralizing antibodies. OxLDL-induced cell death was also reduced in the aortic endothelium cultured from gld (FasL-/-) and lpr (Fas-/-) mice as compared with wild-type mice. OxLDL acted by sensitizing endothelial cells to death signals from the Fas receptor. Thus, the ability of OxLDL to promote Fas-mediated endothelial cell suicide may be a feature that contributes to their atherogenicity.  相似文献   

15.
Fas is a surface receptor that can transmit signals for apoptosis. Using retroviral cDNA library-based functional cloning we identified a gene, toso, that blocks Fas-mediated apoptosis. Toso expression was confined to lymphoid cells and was enhanced after cell-specific activation processes in T cells. Toso appeared limited to inhibition of apoptosis mediated by members of the TNF receptor family and was capable of inhibiting T cell self-killing induced by TCR activation processes that up-regulate Fas ligand. We mapped the effect of Toso to inhibition of caspase-8 processing, the most upstream caspase activity in Fas-mediated signaling, potentially through activation of cFLIP. Toso therefore serves as a novel regulator of Fas-mediated apoptosis and may act as a regulator of cell fate in T cells and other hematopoietic lineages.  相似文献   

16.
17.
Cross-linking of the Fas-antigen (CD95, Apo-1) triggers apoptosis in activated T cells and transformed T cell lines. Fas-induced apoptosis has been previously reported to require Fas-triggered tyrosine phosphorylation of various proteins. In the present study, we have compared the protein tyrosine phosphorylation pattern and the apoptosis sensitivity in a set of Jurkat variants selected for the absence or presence of T cell receptor (TCR)/CD3 expression and resistance or sensitivity to Fas-mediated apoptosis. While tyrosine phosphorylation upon Fas-ligation was readily apparent in wild-type Jurkat cells (which are sensitive to anti-Fas-induced apoptosis), drastically reduced tyrosine phosphorylation was observed in Fas-resistant Jurkat subclones (which still express CD95 on their surface). More importantly, TCR/CD3-negative Jurkat variants which expressed normal levels of CD95 and were fully susceptible to Fas-triggered cell death, did not show any protein tyrosine phosphorylation upon Fas-ligation. Taken together, our data demonstrate that Fas-induced cell death can be associated with but is not dependent on protein tyrosine phosphorylation.  相似文献   

18.
19.
The Fas antigen is a transmembrane receptor belonging to the tumor necrosis factor-alpha (TNF) receptor family that, when activated by Fas ligand or agonistic antibodies, induces death by apoptosis. Although the presence of Fas antigen in ovarian tissues has been demonstrated, little is known about whether Fas antigen is functional in the ovary. This report shows that murine granulosa cells are initially resistant to antibody-induced Fas-mediated apoptosis, but will undergo apoptosis when cotreated with TNF and interferon-gamma (IFN) or cycloheximide (CX). Granulosa cells were obtained from follicles of 23-day-old mice 2 days after injection of PMSG. Twenty-four hours after plating, cells were pretreated with either 0 or 200 U/ml IFN, which has been shown to induce Fas antigen expression and is required for Fas-mediated killing in many cell types. At 48 h, cells were treated with 2 microg/ml control IgG, 2 microg/ml anti-Fas antigen antibody (Fas mAb), 10 ng/ml TNF, or Fas mAb and TNF. Cytotoxicity (percent killing) relative to control IgG was determined at 72 h by counting granulosa cells after trypsinization. In the absence of IFN, no cytotoxicity was observed. In the presence of IFN, neither TNF or Fas mAb alone was cytotoxic, but the combination of Fas mAb and TNF resulted in 25% killing (P < 0.05). Fas antigen messenger RNA (mRNA) was detectable in cultures not treated with cytokines and was increased 5-fold by TNF, 2-fold by IFN, and 17-fold by the combination of IFN and TNF. To test whether the presence of a labile inhibitor(s) of Fas-mediated killing in granulosa cells is the cause of resistance to Fas mAb, the protein synthesis inhibitor CX was used. Experiments were performed as described above, except that cells were treated with 0.5 microg/ml CX in conjunction with other treatments at 48 h. Fas mAb treatment in the presence of CX induced 25% cell death without IFN pretreatment and 38% with IFN (P < 0.05). TNF treatment in the presence of CX had no effect alone, but potentiated the effects of Fas mAb, resulting in 56% killing in the absence of IFN and 86% killing in the presence of IFN (P < 0.05). Cells stained positively for DNA fragmentation and annexin V binding, features characteristic of apoptosis. Because initial experiments showed that treatment with TNF alone increased Fas mRNA levels, the effect of pretreating cells for 24 h with TNF before treatment with Fas mAb was tested. Pretreatment with TNF or IFN alone did not promote Fas mAb-mediated killing, but combined pretreatment with TNF and IFN resulted in 25% killing in response to Fas mAb. Treatment of cells with the combination of IFN and TNF induced a 19-fold increase in Fas antigen mRNA levels. Corresponding increases in Fas antigen protein expression on the surface of cells in response to cytokine treatments were detected by immunocytochemistry. Human TNF did not duplicate the effects of mouse TNF in inducing Fas antigen mRNA expression and Fas mAb-induced killing. As human TNF interacts exclusively with the type I, but not the type II, TNF receptor in the mouse, potentiating effects of mouse TNF on the Fas pathway are probably mediated via the type II TNF receptor. The effects of cytokine treatments on levels of mRNA for FAP-1, an inhibitor of Fas-mediated apoptosis, were determined. FAP-1 mRNA was detectable in untreated granulosa cells, and levels were not altered by treatment with TNF and/or IFN. In summary, the Fas-mediated pathway of apoptosis is functional in mouse granulosa cells that are stimulated with IFN and TNF. These cytokines may function at least partially by increasing Fas antigen expression. Granulosa cells appear to have inhibitors of the Fas antigen pathway, as treatment with CX potentiates Fas-mediated death. TNF promotes Fas-mediated killing in the presence and absence of CX. Therefore, TNF is not likely to act simply by increasing Fas antigen expression or decreasing protein inhibitors of the Fas pathway, because TNF remains effec  相似文献   

20.
To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with enhanced BCR death sensitivity and vice versa. In contrast, clones resistant to Fas-mediated apoptosis could still undergo BCR-induced cell death. Based on the functional phenotypes of these clones, we hypothesized that both receptor-induced apoptosis pathways are initially distinct but may eventually converge. Indeed, ligation of both Fas and BCR resulted in cleavage of the IL-1beta-converting enzyme/Ced-3-like protease caspase 3 and its substrates Ac-Asp-Glu-Val-Asp-aldehyde and poly(ADP-ribose) polymerase. Markedly, qualitative differences in the caspase 3 cleavage pattern induced by Fas or BCR ligation were observed; whereas Fas ligation generated caspase 3 cleavage products of 19/20 and 17 kDa, only the latter cleavage product was found upon BCR cross-linking. The caspase inhibitor Val-Ala-Asp-fluoromethylketone blocked both Fas- and BCR-mediated apoptosis, but differentially affected caspase 3 cleavage induced by either stimulus. Finally, overexpression of a Fas-associated death domain (FADD) dominant-negative mutant protein was found to inhibit Fas-induced apoptosis but not BCR-induced apoptosis. Together our findings imply that Fas and BCR couple, via FADD-dependent and FADD-independent mechanisms, respectively, to distinct proteases upstream of caspase 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号