首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

2.
The DNA specificity subunit (HsdS) of type I restriction-modification enzymes is composed of two independent target recognition domains and several regions whose amino acid sequence is conserved within an enzyme family. The conserved regions participate in intersubunit interactions with two modification subunits (HsdM) and two restriction subunits (HsdR) to form the complete endonuclease. It has been proposed that the domains of the HsdS subunit have a circular organisation providing the required symmetry for their interaction with the other subunits and with the bipartite DNA target. To test this model, we circularly permuted the HsdS subunit of the type IB R-M enzyme EcoAI at the DNA level by direct linkage of codons for original termini and introduction of new termini elsewhere along the N-terminal and central conserved regions. By analysing the activity of mutant enzymes, two circularly permuted variants of HsdS that had termini located at equivalent positions in the N-terminal and central repeats, respectively, were found to fold into a functional DNA recognition subunit with wild-type specificity, suggesting a close proximity of the N and C termini in the native protein. The wild-type HsdS subunit was purified to homogeneity and shown to form a stable trimeric complex with HsdM, M2S1, which was fully active as a DNA methyltransferase. Gel electrophoretic mobility shift assays revealed that the HsdS protein alone was not able to form a specific complex with a 30-mer oligoduplex containing a single EcoAI recognition site. However, addition of stoichiometric amounts of HsdM to HsdS led to efficient specific DNA binding. Our data provide evidence for the circular organisation of domains of the HsdS subunit. In addition, they suggest a possible role of HsdM subunits in the formation of this structure.  相似文献   

3.
4.
We have used deletion mutagenesis and PCR-based misincorporation mutagenesis to produce a collection of mutations in the central conserved region of the DNA binding subunit of the type IC restriction endonuclease EcoR124I. It has been proposed that this domain is involved in protein-protein interactions during the assembly of the endonuclease. While a large percentage of these mutations gave a classical Res- Mod- phenotype, one mutant was isolated with a nonclassical Res- Mod+ phenotype. The loss of restriction activity, but retention of the ability to modify indicates that this mutation cannot affect DNA binding and must alter the assembly of the endonuclease in such a way as to prevent DNA cleavage but allow methylation. This mutant resulted from a single amino acid change Trp212-->Arg. The location of the single amino acid change is at the border of the central conserved region and the second target recognition domain (TRD2) and suggests that this region is extremely important for the assembly of the methylase with the HsdR subunit into a functional restriction endonuclease.  相似文献   

5.
The methyltransferase of the EcoK type I restriction/modification system is trimeric, M2S1, where the S subunit determines the sequence specificity of the enzyme. The methyltransferase has a strong preference for hemimethylated substrate DNA and, therefore, we have investigated the effect of the methylation state of DNA on binding by the enzyme, together with the effects on binding of the cofactor S-adenosyl-L-methionine. Our results indicate that the methyltransferase has two non-interacting S-adenosyl-L-methionine binding sites, each with a dissociation constant of 3.60 (+/- 0.42) microM determined by equilibrium dialysis, or 2.21 (+/- 0.29) microM determined by the displacement of a fluorescent probe. Ultraviolet light-induced crosslinking showed that S-adenosyl-L-methionine binds strongly only to the modification (M) subunits. Changes in the sedimentation velocity of the methyltransferase imply a protein conformational change due to S-adenosyl-L-methionine binding. Gel retardation results show that the binding of S-adenosyl-L-methionine to the methyltransferase enhances binding to both specific and non-specific DNAs, but the enhancement is greater for the specific DNA. Differences in binding affinities contribute to the recognition of the specific nucleotide sequence AAC(N)6GTGC by the methyltransferase in preference to a non-specific sequence. In contrast, although the complexes of unmodified and hemimethylated DNAs with the methyltransferase have different mobilities in non-denaturing gels, there appears to be no contribution of binding affinity to the distinction between these two substrates. Therefore, the preference for a hemimethylated substrate must be due to a difference in catalysis.  相似文献   

6.
A critical step in the assembly of bacteriophage lambda is the excision of a single genome from a concatemeric DNA precursor and insertion of genomic DNA into an empty viral capsid. DNA packaging is mediated by the lambda proteins gpNu1 and gpA, which form an enzyme complex known as terminase. Initiation of the packaging process requires assembly of the terminase subunits onto cos, the lambda DNA packaging sequence, and nicking of the duplex, thus forming the 12-base-pair "sticky" ends of the mature genome. We have utilized gel-retardation techniques to examine the interaction of gpNu1, gpA, and terminase holoenzyme with DNA. Our data demonstrate that gpNu1 interacts specifically with cos-containing DNA, forming three gel-retarded complexes. Similarly, the larger gpA subunit binds to DNA, forming two complexes; however, this subunit forms similar complexes with DNA substrates of random sequence. All of the nucleoprotein complexes examined are disrupted by elevated concentrations of NaCl and we suggest that altered DNA binding is responsible for the extreme salt sensitivity of the endonuclease activity of the enzyme [Tomka, M. A., & Catalano, C. E. (1993) J. Biol. Chem. 268, 3056-3065]. DNA binding by each subunit is strongly affected by the presence of the other, with 10- and 3-fold increases in the affinity of gpNu1 and gpA, respectively, for DNA. Moreover, our data suggest that the terminase subunits interact in solution prior to DNA binding. Finally, we provide evidence that complex I, the first stable intermediate in the packaging pathway, is composed of the mature left genome end bound to the terminase subunits and demonstrate that dissociation of the complex is quite slow (t1/2 > 8 h). The significance of these data with respect to terminase-mediated genome packaging is discussed.  相似文献   

7.
The type I DNA restriction and modification systems of enteric bacteria display several enzymatic activities due to their oligomeric structure. Partially assembled forms of the EcoKI enzyme from E. coli K12 can display specific DNA binding properties and modification methyltransferase activity. The heterodimer of one specificity (S) subunit and one modification (M) subunit can only bind DNA whereas the addition of a second modification subunit to form M2S1 also confers methyltransferase activity. We have examined the DNA binding specificity of M1S1 and M2S1 using the change in fluorescence anisotropy which occurs on binding of a DNA probe labelled with a hexachlorofluorescein fluorophore. The dimer has much weaker affinity for the EcoKI target sequence than the trimer and slightly less ability to discriminate against other DNA sequences. Binding of both proteins is strongly dependent on salt concentration. The fluorescence results compare favourably with those obtained with the gel retardation method. DNA footprinting using exonucleaseIII and DNaseI, and methylation interference show no asymmetry, with both DNA strands being protected by the dimer and the trimer. This indicates that the dimer is a mixture of the two possible forms, M1S1 and S1M1. The dimer has a footprint on the DNA substrate of the same length as the trimer implying that the modification subunits are located on either side of the DNA helical axis rather than lying along the helical axis.  相似文献   

8.
9.
The type I DNA methyltransferase M.EcoR124I is a multi-subunit enzyme that binds to the sequence GAAN6RTCG, transferring a methyl group from S-adenosyl methionine to a specific adenine on each DNA strand. We have investigated the protein-DNA interactions in the complex by DNase I and hydroxyl radical footprinting. The DNase I footprint is unusually large: the protein protects the DNA on both strands for at least two complete turns of the helix, indicating that the enzyme completely encloses the DNA in the complex. The higher resolution hydroxyl radical probe shows a smaller, but still extensive, 18 bp footprint encompassing the recognition site. Within this region, however, there is a remarkably hyper-reactive site on each strand. The two sites of enhanced cleavage are co-incident with the two adenines that are the target bases for methylation, showing that the DNA is both accessible and highly distorted at these sites. The hydroxyl radical footprint is unaffected by the presence of the cofactor S-adenosyl methionine, showing that the distorted DNA structure induced by M.EcoR124I is formed during the initial DNA binding reaction and not as a transient intermediate in the reaction pathway.  相似文献   

10.
The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.  相似文献   

11.
The RNA polymerase III factor TFIIIB forms a stable complex with DNA and can promote multiple rounds of initiation by polymerase. TFIIIB is composed of three subunits, the TATA binding protein (TBP), TFIIB-related factor (BRF), and B". Chemical footprinting, as well as mutagenesis of TBP, BRF, and promoter DNA, was used to probe the architecture of TFIIIB subunits bound to DNA. BRF bound to TBP-DNA through the nonconserved C-terminal region and required 15 bp downstream of the TATA box and as little as 1 bp upstream of the TATA box for stable complex formation. In contrast, formation of complete TFIIIB complexes required 15 bp both upstream and downstream of the TATA box. Hydroxyl radical footprinting of TFIIIB complexes and modeling the results to the TBP-DNA structure suggest that BRF and B" surround TBP on both faces of the TBP-DNA complex and provide an explanation for the exceptional stability of this complex. Competition for binding to TBP by BRF and either TFIIB or TFIIA suggests that BRF binds on the opposite face of the TBP-DNA complex from TFIIB and that the binding sites for TFIIA and BRF overlap. The positions of TBP mutations which are defective in binding BRF suggest that BRF binds to the top and N-terminal leg of TBP. One mutation on the N-terminal leg of TBP specifically affects the binding of the B" subunit.  相似文献   

12.
13.
The interaction between the GGCC-specific Bsp RI DNA methyltransferase (M. Bsp RI) and substrate DNA was studied with footprinting techniques using a DNA fragment that was unmodified on both strands. Footprinting with DNase I revealed an approximately 14 bp protected region. Footprinting with dimethylsulfate detected major groove interactions with the guanine bases of the recognition sequence. Reaction with 1,10-phenanthroline-copper did not show protection, suggesting that minor groove interactions play little role in sequence-specific recognition by M. Bsp RI. Hydroxyl radical footprinting revealed a protected stretch of 6 nt. The hydroxyl radical footprint of M. Bsp RI differs markedly from the the footprint reported for the Hha I and Sss I methyltransferases. The pattern of protection from dimethylsulfate and hydroxyl radicals suggests that the interactions of M. Bsp RI with DNA are similar to those detected in the co-crystal structure of the Hae III methyltransferase.  相似文献   

14.
15.
The cleavage by calicheamicin gamma 1I (CLM gamma 1I) of a nucleosome formed on the 5S RNA gene of Xenopus borealis was studied in vitro as a first step toward the understanding of CLM gamma 1I-chromatin interactions within the cell. The drug does not cleave in the region of the dyad axis of the nucleosome. Outside of this region, double-stranded cleavage occurs with a periodicity of 10-11 bp. The sites of cleavage correspond to DNA sequences facing outward in the nucleosome. The drug shows some sequence preference of cleavage within these accessible sites. The predominant cleavage event within this nucleosome occurs at -1 helical turn from the dyad axis. This site constitutes a "hot spot" for CLM gamma 1I cleavage within the 5S nucleosome. We observe an overall footprinting effect whereby the drug preferentially cleaves DNA located outside the nucleosome core (analogous to the linker DNA of chromatin) as compared to cleavage within the nucleosome core. We discuss the importance of accessibility, structural deformations of DNA within the nucleosome, and steric constraints posed by sequence, in the recognition and cleavage of nucleosomal DNA by calicheamicin.  相似文献   

16.
The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to carry an active DDE domain. Using a mixture of MuA proteins with either wild-type or altered att-DNA binding specificities, we have now designed specific arrangements of MuA subunits carrying the DDE domain. From analysis of the abilities of oriented tetramers to carry out DNA cleavage and strand transfer from supercoiled DNA, a new picture of the disposition of DNA and protein partners during transposition has emerged. For DNA cleavage, two subunits of MuA located at attL1 and attR1 (sites that undergo cleavage) provide DDE residues in trans. The same two subunits contribute DDE residues for strand transfer, also in trans. Thus, only two active DDE+ monomers within the tetramer carry out complete Mu transposition. We also show that when the attR1-R2 arrangement used on supercoiled substrates is tested for cleavage on linear substrates, alternative chemically competent DNA-protein associations are produced, wherein the functional DDE subunits are positioned at R2 rather than at R1.  相似文献   

17.
The class-IIS restriction endonuclease, R.MmeI, was isolated from Methylophilus methylotrophus. It was originally described as a monomeric enzyme, with the native Mr 105000+/-7000, which did not cleave DNA efficiently [Boyd et al. (1986) Nucleic Acids Res. 14, 5255-5274; Tucholski et al. (1995) Gene 157, 87-92]. However, it was discovered that R.MmeI endonucleolytic activity is enhanced by S-adenosyl-l-methionine (AdoMet) and sinefungin, an analogue of AdoMet. Surprisingly, the purified R.MmeI endonuclease was found to have a second enzymatic activity, namely methylation of the adenine residue to N6-methyladenine in the top strand of the MmeI-recognition sequence, 5'-TCCR*AC-3' (*A=meA. The R.MmeI methylating activity requires AdoMet and is increased in the presence of several divalent cations, 20-fold by Mg2+ or Ca2+, and less by Mn2+, Zn2+ and Co2+; however, methylation is inhibited entirely by sinefungin, at concentrations above 9microM. The latter observation shows that the enhancing effect of AdoMet or sinefungin on the DNA cleavage was not related to the process of DNA methylation. Furthermore, a second component of the MmeI restriction-modification system, a M.MmeI methyltransferase, was isolated and purified. The M.MmeI protein was found to have an Mr of 48000+/-2000 (under denaturing conditions) and to methylate both adenine residues (*A) in the MmeI-recognition sequence 5'-TCCR*AC-3'/3'-*AGGYTG-5'. Methylation of the top strand does not inhibit the DNA cleavage by R.MmeI, whereas methylation of both DNA strands blocks the cleavage process.  相似文献   

18.
The type I DNA restriction and modification enzymes of prokaryotes are multimeric enzymes that cleave unmethylated, foreign DNA in a complex process involving recognition of the methylation status of a DNA target sequence, extensive translocation of DNA in both directions towards the enzyme bound at the target sequence, ATP hydrolysis, which is believed to drive the translocation possibly via a helicase mechanism, and eventual endonucleolytic cleavage of the DNA. We have examined the DNA binding affinity and exonuclease III footprint of the EcoKI type IA restriction enzyme on oligonucleotide duplexes that either contain or lack the target sequence. The influence of the cofactors, S-adenosyl methionine and ATP, on binding to DNA of different methylation states has been assessed. EcoKI in the absence of ATP, with or without S-adenosyl methionine, binds tightly even to DNA lacking the target site and the exonuclease footprint is large, approximately 45 base-pairs. The protection is weaker on DNA lacking the target site. Partially assembled EcoKI lacking one or both of the subunits essential for DNA cleavage, is unable to bind tightly to DNA lacking the target site but can bind tightly to the recognition site. The addition of ATP to EcoKI, in the presence of AdoMet, allows tight binding only to the target site and the footprint shrinks to 30 base-pairs, almost identical to that of the modification enzyme which makes up the core of EcoKI. The same effect occurs when S-adenosyl homocysteine or sinefungin are substituted for S-adenosyl methionine, and ADP or ATPgammaS are substituted for ATP. It is proposed that the DNA binding surface of EcoKI comprises three regions: a "core" region which recognises the target sequence and which is present on the modification enzyme, and a region on each DNA cleavage subunit. The cleavage subunits make tight contacts to any DNA molecule in the absence of cofactors, but this contact is weakened in the presence of cofactors to allow the protein conformational changes required for DNA translocation when a target site is recognised by the core modification enzyme. This weakening of the interaction between the DNA cleavage subunits and the DNA could allow more access of exonuclease III to the DNA and account for the shorter footprint.  相似文献   

19.
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components.  相似文献   

20.
The EcoRV restriction endonuclease cleaves DNA specifically at its recognition sequence in the presence of magnesium ions, but several studies have indicated that it binds to DNA in the absence of Mg2+ without any preference for its recognition site. However, specific binding to the recognition site has also been reported. To distinguish between these reports, oligodeoxynucleotides were tagged with either dansyl or eosin fluorophores at their 5' termini and annealed to form duplexes of 12 to 16 base-pairs. For each length of duplex, one derivative had the EcoRV recognition sequence while another lacked this sequence. For the duplexes with the recognition site, the fluorophores had no effect on DNA cleavage rates by EcoRV in the presence of Mg2+. The binding of the specific and non-specific duplexes to EcoRV in the absence of Mg2+ was measured by fluorescence resonance energy transfer and by fluorescence depolarization. In both procedures, the signal from the specific complex differed from the complex with non-specific DNA, with the depolarization data indicating that non-specific DNA bound to EcoRV retains a higher rotational freedom than specific DNA. Even so, the equilibrium constant for the binding of specific DNA was identical, within error limits, to that for non-specific DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号