首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technology for fabricating lightly doped drain (LDD) MOSFET devices based on disposable sidewall spacers is presented. Using a thin polysilicon buffer layer between the low-temperature oxide (LTO) sidewall spacers and the oxidized polysilicon gate, a single masking step can be used to form the n- and n+ or p- and p+ source/drain implants for the NMOS and PMOS devices, respectively. In addition, the LTO sidewall spacers may be removed by a wet HF strip, thus minimizing additional damage to the gate oxide that may be caused by reactive ion etch removal. The disposable sidewall spacer technology is easily adaptable to a CMOS process as demonstrated by the fabrication of a 4 K×4 SRAM circuit using a conventional 1.5-μ CMOS technology  相似文献   

2.
An advanced 0.5-μm CMOS technology which features disposable TiN spacers to define both lightly doped drain (LDD) implantation and self-aligned silicided source, drain, and gate regions is discussed. Since the LDD implantation sequences are reversed using the disposable TiN spacers, this process results in CMOS devices with low salicided junction leakage, reduced source/drain lateral diffusion, and shallow phosphorus N- and boron P- regions for improved short-channel behavior  相似文献   

3.
A low-resistance self-aligned Ti-silicide process featuring selective silicon deposition and subsequent pre-amorphization (SEDAM) is proposed and characterized for sub-quarter micron CMOS devices. 0.15-μm CMOS devices with low-resistance and uniform TiSi2 on gate and source/drain regions were fabricated using the SEDAM process. Non-doped silicon films were selectively deposited on gate and source/drain regions to reduce suppression of silicidation due to heavily-doped As in the silicon. Silicidation was also enhanced by pre-amorphization, using ion-implantation, on the narrow gate and source/drain regions. Low-resistance and uniform TiSi2 films were achieved on all narrow, long n+ and p+ poly-Si and diffusion layers of 0.15-μm CMOS devices. TiSi2 films with a sheet resistance of 5 to 7 Ω/sq were stably and uniformly formed on 0.15-μm-wide n+ and p+ poly-Si. No degradation in leakage characteristics was observed in pn-junctions with TiSi2 films. It was confirmed that, using SEDAM, excellent device characteristics were achieved for 0.15-μm NMOSFET's and PMOSFET's with self-aligned TiSi2 films  相似文献   

4.
An advanced elevated source/drain CMOS process which features self-aligned lightly-doped drain (LDD) and channel implantation is described. Unlike conventional elevated source/drain structures which employ separate polysilicon deposition steps to define the source/drain and gate electrodes, this new structure provides self-alignment of the LDD regions with the heavily doped channel regions to avoid dopant compensation effects. This process employs a single selective silicon deposition step to define both the epitaxial source/drain and polycrystalline gate regions. A single sidewall spacer is used for both LDD and salicide definition. Unlike conventional elevated source/drain CMOS processes, the final MOSFET structure provides self-alignment of the LDD regions with the heavily doped channel regions. Salicidation is performed after selective silicon deposition to provide low sheet resistances for the source/drain and gate regions. Small-geometry NMOS and PMOS devices have been fabricated which display excellent short channel behavior  相似文献   

5.
An 0.8-μm n-channel MOSFET with a TiSi2-Si Schottky clamped drain-to-body junction (SCDR) and an n+ implanted standard source structure have been fabricated in a conventional 0.8-μm salicide CMOS process without any process modifications. The SCDR should be useful for reducing susceptibility for latch-up in integrated CMOS RF power amplifiers and switches where drain to p-substrate junctions can be forward biased during normal operations. Output I-V characteristics of the devices are the same as those of conventional MOSFETs, while parasitic lateral n+-drain/p-substrate/n+-source bipolar transistor measurements showed significantly reduced current gains because the Schottky barrier diode which does not inject minority carriers (electrons) to the p-substrate base clamps the n+ drain-to-p-substrate guard-ring diode connected in parallel  相似文献   

6.
An advanced inverse-T LDD (ITLDD) CMOS process has been developed. This process features self-aligned lightly-doped-drain/channel implantation for improved hot-carrier protection. Selective polysilicon deposition is used to define the thick polysilicon gate regions with a thin polysilicon gate regions overlying the lightly doped n- and p+ regions. Since the thick poly gate regions are defined by nitride sidewall spacers, optical lithography can be used to define sub-half-micrometer gate length MOSFETs. The LDD implants are performed after the n+ and p+ implants are annealed, resulting in MOSFET's with improved short-channel behavior due to the smaller lateral source/drain diffusion  相似文献   

7.
MOS transistors with effective channel lengths down to 0.2 μm have been fabricated in fully depleted, ultrathin (400 Å) silicon-on-insulator (SOI) films. These devices do not exhibit punchthrough, even for the smallest channel lengths, and have performance characteristics comparable to deep-submicrometer bulk transistors. The NMOS devices have a p+-polysilicon gate, and the PMOS devices have an n+-polysilicon gate, giving threshold voltages close to 1 V with very light channel doping. Because the series resistance associated with the source and drain regions can be very high in such thin SOI films, a titanium salicide process was used using a 0.25 μm oxide spacer. With this process, the sheet resistance of the silicided SOI layer is approximately 5 Ω/□. However, the devices still exhibit significant series resistance, which is likely due to contact resistance between the silicide and silicon source/drain regions  相似文献   

8.
The fabrication of sub-0.1-μm CMOS devices and ring oscillator circuits has been successfully explored. The key technologies include: lateral local super-steep-retrograde (SSR) channel doping with heavy ion implantation, 40-nm ultrashallow source/drain (S/D) extension, 3-nm nitrided gate oxide, dual p+/n+ poly-Si gate electrode, double sidewall scheme, e-beam lithography and RIE etching for sub-0.1-μm poly-Si gate pattern, thin and low sheet resistance SALICIDE process, etc. By these innovations in the technologies, high-performance sub-0.1-μm CMOS devices with excellent short-channel effects (SCEs) and good driving ability have been fabricated successfully; the shortest channel length is 70 nm. 57 stage unloaded 0.1-μm CMOS ring oscillator circuits exhibiting delay 23.8 ps/stage at 1.5 V, and 17.5 ps/stage and 12.5 ps/stage at 2 V and 3 V, respectively, are achieved  相似文献   

9.
A CMOS VLSI technology using p- and p+ poly gates for NMOS and PMOS devices is presented. Due to the midgap work function of the p- poly gate, the NMOS native threshold voltage is 0.7 V and, therefore, no additional threshold adjust implantation is required. The NMOS transistor is a surface-channel device with improved field-effect mobility and lower body effect due to the reduction in the channel doping concentration. In addition, the p - poly gate is shown to be compatible with p+ poly-gated surface-channel PMOS devices  相似文献   

10.
A novel LDD spacer technology that uses disposable silicon nitride spacers on a sacrificial polysilicon frame has been developed for a sub-half-micrometer CMOS technology. An improvement in short-channel behavior is achieved due to a reduction in lateral LDD n- and p- diffusion, and the effect of substrate bias on the drain junction leakage caused by sidewall spacer formation is eliminated. The DC hot-carrier lifetime for the 0.3-μm-channel-length poly-framed LDD NMOS devices, defined as the time associated with a 10% shift in peak transconductance, is in excess of 10 years for a power supply voltage of 3.3 V  相似文献   

11.
A buried-channel p-MOSFET with a large-tile-angle implanted punchthrough stopper (LATIPS) is described. In this device the n+ LATIPS region was successfully realized adjacent to the p+ source/drain, even without a sidewall spacer, by taking advantage of the n+ large-tilt-angle implant. In spite of the relatively deep p+ junction of 0.2-μm depth and the low n-well concentration of 1×1016 cm-3, the 0.5-μm LATIPS device (with corresponding channel length of 0.3 μm) achieved high punchthrough resistance, e.g. a low subthreshold swing of 95 mV/decade with a high transconductance of 135 mS/mm  相似文献   

12.
Submicrometer CMOS transistors require shallow junctions to minimize punchthrough and short-channel effects. Salicide technology is a very attractive metallization scheme to solve many CMOS scaling problems. However, to achieve a shallow junction with a salicide structure requires careful optimization for device design tradeoffs. Several proposed techniques to form shallow titanium silicide junctions are critically examined. Boron, BF2, arsenic, and phosphorus dopants were used to study the process parameters for low-leakage TiSi 2 p+/n and n+/p junctions in submicrometer CMOS applications. It is concluded that the dopant drive-out (DDO) from the TiSi2 layer to form a shallow junction scheme is not an efficient method for titanium salicide structure; poor device performance and unacceptably leaky junctions are obtained by this scheme. The conventional post junction salicide (PJS) scheme can produce shallow n+/p and p+/n junctions with junction depths of 0.12 to 0.20 μm below the TiSi2. Deep submicrometer CMOS devices with channel length of 0.40 to 0.45 μm can be fabricated with such junctions  相似文献   

13.
As a result of MOS device scaling, very shallow source-drain structures are needed to minimize short-channel effects in 1-µm transistors. This can be readily achieved with highly doped arsenic regions for NMOS devices but is more difficult using boron for PMOS devices. In addition, shallow junctions suffer from inherently high sheet resistances due to dopant solid solubility limitations. This paper proposes an improved CMOS source-drain technology to overcome both these problems. The technique employs amorphizing silicon implants prior to dopant implantation to eliminate ion channeling and platinum silicidation to substantially reduce sheet resistance. Counterdoping of the p+regions by high-concentration arsenic implantation is used to enable both NMOS and PMOS devices to be manufactured with only one photolithographic masking operation. Using this technique, n+and p+junction depths are 0.22 µm and of 8 Ω/sq. sheet resistance. By creating oxide sidewalls on gate conductors, polysilicon can be silicided simultaneously with diffusions. Results of extensive materials analysis are discussed in detail. The technique has been incorporated into a VLSI CMOS process schedule at our laboratories.  相似文献   

14.
Dual work function gate electrodes have been implemented in a 1-μm CMOS process. Dopant atoms were implanted into tungsten silicide simultaneously with the source-drain implantations and subsequently diffused into the underlying polycrystalline silicon layer by rapid thermal annealing. Physical analyses showed that arsenic and boron could easily be incorporated in the polysilicon to concentrations greater than 1020 cm-3. Capacitor and transistor measurements confirmed that n+ and p+ silicon could be obtained, with a difference of about 1 V between the respective flat-band voltages. By comparison with conventional n-type gate MOSFETs, it was verified that significantly improved subthreshold characteristics were obtained with p-type PMOS gate electrodes  相似文献   

15.
The effect of fluorine on MOS device channel length has been evaluated. Fluorine has been introduced into the transistor by self-aligned ion implantation after the lightly doped drain (LDD) implant. The impact of fluorine in the LDD region, and its effect on the electrically determined channel length (Leff), has been examined. Measurements taken from 0.6-μm LDD MOSFETs show a significant dependence of the Leff on fluorine implant dose. The n+ resistor also shows more width reduction compared to unfluorinated samples. The decrease in channel length reduction by adding fluorine in the LDD region may yield way to relieve short-channel effects for the continuous scaling of CMOS devices into the deep-submicrometer region  相似文献   

16.
A technique is developed to measure silicon-on-insulator (SOI) silicon device film thickness using a MOSFET. The method is based on CV measurements between gate and source/drain at two different back-gate voltages. The SOI devices used in this study were n+ polysilicon gate n-channel MOSFETs fabricated with modified submicrometer CMOS technology on SIMOX (separation by implanted oxygen) wafers. The SIMOX wafers were implanted with a high dose of oxygen ions (1018 cm-2) at 200 keV and subsequently annealed at 1230°C. The NMOS threshold boron implant dose is 2×1012 cm-2. This method is simple, nondestructive, and no special test structure is needed. Using this technique, SOI film thickness mapping was made on a finished wafer and a thickness variation of ±150 Å was found  相似文献   

17.
A new dual poly-Si gate CMOS fabrication process is proposed. The incorporated technology features a boron-penetration-resistant MBN gate structure for pMOSFET's, and a dual poly-Si gate CMOS process involving separate depositions of in-situ doped n+ and p+ poly-Si for the nMOS and pMOS gates, 0.2-μm CMOS devices with 3.5-nm gate oxide have been successfully fabricated. The advantages of the new process are demonstrated on these test devices. A CMOS 1/16 dynamic frequency divider fabricated by the new process functions properly up to 5.78 GHz at a 2-V supply voltage  相似文献   

18.
Deep-submicrometer large-angle-tilt implanted drain (LATID) technology is described. It is found by Monte Carlo process simulation and SIMS measurements that a sufficiently long n- region can be formed under the gate by taking advantage of large-angle-tilt implant and successfully without ion channeling by taking care of the implant direction. A design that offsets the n+ implant by sidewall spacers to suppress the n+-gate overlap to zero while keeping the n- region fully overlapped with the gate is found to be crucial for improved performance and reliability. The device performance, such as current drivability and short-channel effects, is described, and the circuit speed is investigated. Hot-carrier effects such as lateral electric field and device lifetime over a wide range of drain structures are also investigated. The tradeoff between device performance and hot-carrier reliability in deep-submicrometer LATID FETs is discussed  相似文献   

19.
The optimization of a manufacturable self-aligned titanium silicide process is described. In particular, the integrity of the TiSi 2 layer has been studied versus the BPSG reflow conditions. Excellent contact resistance and very low leakage currents have been obtained. The good device parameters obtained with an n+ or n +/p+ gate have demonstrated that the self-aligned process can be integrated in a 0.8-μm double-metal CMOS process  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号