首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esa S. Melin  M  Hallvard degaard  M 《Water research》2000,34(18):2481-4476
The effect of biofilter loading rate on the removal of organic ozonation by-products (OBPs) was studied in three biofilters used for the pretreatment of drinking water. One of the biofilters contained plastic biofilm media (KMT) and the two others contained expanded clay aggregates (Filtralite). Tests were carried out with ozonated humic water at several OBP concentration levels using empty bed contact times (EBCTs) from 6.2 to 48 min. The sum of aldehyde (formaldehyde, acetaldehyde, glyoxal and methyl glyoxal) and acetone concentrations ranged from 21 to 77 μg l−1 in the ozonated water. The total ketoacid (glyoxylic, pyruvic, and ketomalonic acids) concentrations varied from 92 to 521 μg l−1. The results were modelled using a first-order model including parameter for minimum substrate concentration (Smin). The OBPs showed different sensitivities to decreasing EBCT. Formaldehyde and pyruvic acid had the highest specific removal rates and their removal was little affected by increased loading rate. Ketomalonic acid had the lowest specific removal rate and its removal efficiency was reduced most with decreasing EBCT. The other studied OBPs had specific removal rates close to each other. The ketoacids had higher Smin concentrations than aldehydes and the Smin concentrations were influenced by the influent OBP concentrations. The biofilter media did not have a significant effect on OBP removal efficiency. Generally, over 80% removal efficiency was obtained for OBPs at EBCTs over 20 min. The significance of OBP concentrations close to Smin for the biological stability of drinking water needs to be determined.  相似文献   

2.
考察了生物倍增工艺处理城市污水的实际效能。结果表明,0.02~0.05kgCOD/(kgMLSS.d)的低负荷运行工况不利于对有机物的稳定去除,出水CODCr为69.8 mg/L,平均去除率仅为65.9%,若要满足有机物的排放标准要求,污泥负荷至少要维持在0.06kgCOD/(kgMLSS.d)以上;系统对氨氮的去除效果很好,氨氮去除率可达到100%;污泥沉降性能较好,SVI稳定在50~70;过低的进水C/N是同步脱氮除磷的制约因素,建议采用补充碳源和辅助化学除磷的方式来满足氮磷排放标准限值要求。  相似文献   

3.
生物滤池/生态砾石床处理含氮微污染地表水   总被引:2,自引:0,他引:2  
采用生物滤池/生态砾石床组合工艺进行了微污染地表水(含低碳、高NO3--N浓度)的脱氮研究,通过投加乙酸钠为碳源考察了C/N值、温度、水力负荷对反应器脱氮效能的影响。结果表明,C/N值对反应器的脱氮效能影响较大,在C/N值为10时可以取得较高的反硝化效率(>90%)。在低温下(2~10℃)反应器的反硝化效能受到严重抑制;在13~17℃条件下,反硝化效率恢复到60%左右;当水温>20℃时,在水力负荷为8 m3/(m2.h)的条件下(此时生物滤池和生态砾石床的水力停留时间分别为15、30 min),对NO3--N的去除率能够达到90%以上。生态砾石床能够将生物滤池出水中残余的碳源去除,保证了出水的水质安全。  相似文献   

4.
采用间歇膨胀复合厌氧/A-O-SBR工艺处理高浓度制药废水,在进水有机负荷为2.134~11.488 kgCOD/(m3.d)、pH值为4.5~6的常温条件下,厌氧反应器COD去除率>70%,容积负荷可达到9.075 kgCOD/(m3.d)。厌氧出水经A-O-SBR及混凝气浮处理后,出水COD、氨氮、总磷、pH值分别为130 mg/L、4.4 mg/L、2.39 mg/L、7.8,完全满足企业所在地的纳管排放要求。  相似文献   

5.
In response to the growing concern over volatile organic compounds (VOCs), biofiltration is becoming an established economical air pollution control technology for removing VOCs from waste air streams. Current research efforts are concentrating on improving control over key parameters that affect the performance of gas phase biofilters. This study utilized diethyl ether as a substrate, nitrate as the sole nutrient nitrogen source within two co-currently operated trickle-bed biofilters, for over 200 days. The two pelletized medium biofilters were operated at a low empty bed contact time of 25 s, inlet gas flow rates of 8.64 m3/day, nutrient liquid flow rates of 1 liter/day, and COD loading rates of 1.8 and 3.6 kg/m3 per day, respectively. Operational parameters including contaminant concentration in the gas phase, nutrient nitrate concentration in the aqueous phase, and the frequency of biomass removal were considered. Special attention was given to the effect and the role of nitrate on VOC removal. Throughout the experiment, nitrate persisted in the liquid effluent and the ether removal efficiencies improved with increasing influent nitrate concentration, which suggest that the nitrate diffusion into the biofilms is rate determining. By increasing the concentration of oxygen in the feed to this biofilter from 21% (ambient air) to 50 and 100%, while maintaining an influent ether concentration of 133 ppmv and a feed nitrate concentration of 67 mg-N/liter, the performance of the biofilter was not significantly affected. These results suggest that nitrogen was rate limiting as a growth nutrient rather than as an electron acceptor for the respiration of ether. The results also indicated that removal of excess biomass is necessary to maintain long-term performance. However, the required frequency of biomass removal depends on operating parameters such as loading.  相似文献   

6.
以甲醇为碳源,进行了生物滤池去除二级处理出水中氮、磷的试验研究。结果表明,随着甲醇投量的增大则生物滤池出水中的总氮浓度降低,但对总磷的去除率呈下降趋势。当甲醇投量为10mg/L时,生物滤池出水中的总氮〈6.60mg/L,对总氮的去除率〉37%,对总磷的去除率〉43%;当甲醇投量为20mg/L时,生物滤池出水中的总氮〈1.20mg/L,对总氮的去除率〉88%,对总磷的去除率〉9%;当甲醇投量为30mg/L时,生物滤池出水中的总氮〈1.20mg/L,对总氮的去除率〉88%,对总磷的去除率〉6%。当滤速在3~8.5m/h间变化时,陶粒滤池的脱氮除磷效果基本不受影响;砂滤池的脱氮除磷效果稍优于陶粒滤池。  相似文献   

7.
微污染源水中的污染物以有机物和氨氮为主,采用传统工艺处理时其出水水质难以达到《生活饮用水卫生标准》(GB 5749—2006)的要求。将沸石作为生物滤池的填料,与混凝沉淀、超滤组合后用于处理微污染地表水,考察了其对污染物的去除效果。结果表明:该组合工艺对氨氮有较好的去除效果,出水氨氮在0.5 mg/L以下,去除率可达90%;对有机物也有较好的去除效果,出水CODMn在2 mg/L左右,去除率约为60%,出水水质达到了《生活饮用水卫生标准》(GB 5749—2006)的要求。该工艺对氨氮的去除主要由沸石生物滤池完成,而沸石生物滤池、混凝沉淀及超滤均能去除CODMn,贡献率分别为49.6%、30.9%、19.5%。  相似文献   

8.
Zeng H  Arashiro M  Giammar DE 《Water research》2008,42(18):4629-4636
Arsenate removal from water using an iron oxide-based sorbent was investigated to determine the optimal operating conditions and the influence of water composition on treatment efficiency. The novel sorbent with a high surface area was studied in flow-through column experiments conducted at different flow rates to quantify the effect of empty bed contact time (EBCT) on treatment performance. Arsenic removal efficiency declined with decreasing EBCT. Arsenic breakthrough curves at different EBCT values were successfully simulated with a pore and surface diffusion model (PSDM). Surface diffusion was the dominant intraparticle mass transfer process. The effect of water composition on arsenic removal efficiency was evaluated by conducting experiments with ultrapure water, ultrapure water with either phosphate or silica, and a synthetic groundwater that contained both phosphate and silica. Silica was more inhibitory than phosphate, and the silica in synthetic groundwater controlled the arsenic removal efficiency.  相似文献   

9.
Pilot studies investigated the fates of color, dissolved organic carbon (DOC), and biodegradable organic matter (BOM) by the tandem of ozone plus biofiltration for treating a source water having significant color (50 cu) and DOC (3.2 mg/l). Transferred ozone doses were from 1.0 to 1.8 g O3/g C. Rapid biofilters used sand, anthracite, or granular activated carbon as media with empty-bed contact time (EBCT) up to 9 min. The pilot studies demonstrated that ozonation plus biofiltration removed most color and substantial DOC, and increasing the transferred ozone dose enhanced the removals. For the highest ozone dose, removals were as high as 90% for color and 38% for DOC. While most of the color removal took place during ozonation, most DOC removal occurred in the biofilters, particularly when the ozone dose was high. Compared to sand and anthracite biofilters, the GAC biofilter gave the best performance for color and DOC removal, but some of this enhanced performance was caused by adsorption, since the GAC was virgin at the beginning of the pilot studies. Backwashing events had no noticeable impact of the performance of the biofilters. The Transient-State, Multiple-Species Biofilm Model (TSMSBM) was used to interpret the experimental results. Model simulations show that soluble microbial products, which comprised a significant part of the effluent BOM, offset the removal of original BOM, a factor that kept the removal of DOC relatively constant over the range of EBCTs of 3.5-9 min. Although improved biofilm retention, represented by a small detachment rate, allowed more total biofilm accumulation and greater removal of original BOM, it also caused more release of soluble microbial products and the build up of inert biomass in the biofilm. Backwashing had little impact on biofilter performance, because it did not remove more than 25% of the biofilm under any condition simulated.  相似文献   

10.
Moe WM  Qi B 《Water research》2004,38(9):2258-2267
Biological treatment processes used to remove and degrade volatile organic compounds (VOCs) from contaminated gases emitted by industrial operations or waste treatment processes are almost always subjected to transient loading conditions because of the inherently unsteady-state nature of contaminant generating processes. In the study presented here, a laboratory-scale biofilter populated by a mixed culture of fungi was used to study the transient response to various periods of no contaminant loading in a system treating a model waste gas stream containing a mixture of commonly used solvents. The biofilter, packed with cubed polyurethane foam media and operated with an empty bed residence time of 15s, was supplied with a four-component mixture of n-butyl acetate, methyl ethyl ketone, methyl propyl ketone, and toluene at target influent concentrations of 124, 50.5, 174, and 44.6 mg/m(3), respectively. This corresponds to a total VOC loading rate of 94.3g/(m(3)h). Biofilter performance was evaluated over a 94-day period for three loading conditions intended to simulate processes generating contaminated gases only during daytime operation, daytime operation with weekend shutdown periods, and with long term (9-day) shutdown. Results indicate that fungal biofilters can be an effective alternative to conventional abatement technologies for treating solvent contaminated off-gases even under discontinuous loading conditions.  相似文献   

11.
Denitrifying biokinetics in biofilters packed with suspended carriers were evaluated under different empty bed residence times (EBRT) with ethanol or acetate as the electron donor. The two denitrifying biofilters removed nitrate (NO3–N) effectively after only 3–4 days operation. At EBRT of 30; 15 and 7.5 min, the NO3–N removal percentage was 84; 72 and 59% in the ethanol biofilter, and was 89; 70 and 62% in the acetate biofilter, respectively. With the influent NO3–N loading rate ranged from 0.4 to 1.8 g/(m2·d), the NO3–N removal loading rate increased with increasing influent NO3–N loading rates, and the system was substrate limited. While when the influent nitrate loading rate was above 3 g/(m2·d), the system was biomass limited. The half-order coefficients were 0.162; 0.175 and 0.274 (mg/L)1/2/min for the ethanol biofilter with the influent NO3–N concentration of 7.3–7.7 mg/L, and were 0.107; 0.165 and 0.303 (mg/L)1/2/min for the acetate biofilter with the influent NO3–N concentration of 6.8–8.0 mg/L. Denitrification efficiency varied slightly during the backwashing cycle, and the effect of backwashing on the effluent turbidity was relatively large, especially for the biofilter with ethanol as the organic carbon.  相似文献   

12.
常温EGSB去除有机物的性能与机理   总被引:5,自引:2,他引:5  
将厌氧污泥膨胀床(EGSB)分别与厌氧生物滤池、好氧生物滤池和活性污泥法串联并用其处理城市污水,考察了EGSB在常温下的工艺性能和去除有机物的机理。结果表明,在常温和较短水力停留时间下,EGSB的厌氧生化过程主要停留在水解阶段,对有机物的去除主要以颗粒污泥的吸附、吸收作用为主;影响EGSB处理效果的主要因素有温度、上升流速、水力停留时间、进水浓度及容积负荷等。  相似文献   

13.
水解酸化/接触氧化/生物滤池工艺处理针织印染废水   总被引:6,自引:2,他引:4  
采用水解酸化/接触氧化/生物滤池工艺处理针织印染废水,几个月的运行结果表明,系统处理效果稳定,对BOD5、COD、SS的去除率均在90%以上,出水各项指标均优于一级排放标准。该工艺具有剩余污泥少、耐冲击负荷能力强、对难降解有机物去除效率高等优点,在纺织印染废水处理中具有实用性。  相似文献   

14.
采用逐步提高抗生素浓度和有机负荷(OLR)的方法,考察改进型内循环厌氧反应器(MIC反应器)对含万古霉素(VA)发酵废液的处理效果,并对微生物群落进行分析。结果表明,污泥经过驯化后,MIC反应器对VA发酵废液有较好的处理能力,当进水VA浓度为70 mg/L左右、水力停留时间(HRT)为4 d时,对MIC反应器运行没有抑制效应,此时COD去除率约为90%,VA去除率达到90%以上;当HRT为2 d、进水OLR为25 kgCOD/(m^3·d)时,MIC反应器对VA发酵废液的COD去除负荷最大,为19.5 kg/(m^3·d)。通过微生物多样性检测结果发现,细菌群落在门水平上的优势菌为Bacteroidetes和Firmicutes。  相似文献   

15.
为了优化CASS工艺的运行参数,通过正交试验重点研究了污泥负荷、污泥沉降比(SV)、DO浓度、曝气时间等对COD、氨氮和TP去除效果的影响。结果表明,CASS工艺对有机物的去除效果较好,且抗冲击负荷能力较强;污泥负荷和SV值对COD、氨氮和TP去除效果的影响较大,而曝气时间和DO浓度的影响相对较小;试验条件下,CASS工艺的最佳运行参数如下:污泥负荷为0.50 kgCOD/(kgMLSS·d)、SV值为32%、曝气时间为2.5~3.0 h、DO为2.0~2.5 mg/L。  相似文献   

16.
利用原生动物削减剩余活性污泥产量   总被引:28,自引:4,他引:24  
采用两段式膜生物反应器作为原生动物哺育系统,培养富含原生动物的污泥,然后将其定期接种于普通活性污泥中,利用原生动物对细菌的捕食原理,达到削减剩余污泥量的目的。污泥削减试验中采用了半连续流普通活性污泥系统,通过对比试验,发现接种原生动物以后,污泥产率由0.02kg泥/kgCOD减小至-0.47kg泥/kgCOD,同时污泥絮凝沉降性能得到改善,系统的COD去除率、硝化率得到提高,出水悬浮物浓度得以降低  相似文献   

17.
研究了分别填充堆肥和污泥的生物滤塔对含三甲胺气体的处理能力.结果表明,两种生物滤塔均能有效处理含三甲胺的气体,对三甲胺的去除率几乎达到了100%,三甲胺被生物降解并生成氨.堆肥生物滤塔各段填料中的硝态氮含量随时间的延长呈显著提高的趋势,但pH值出现下降,说明其中发生了氨的硝化作用.而在污泥生物滤塔中,随着氨的积累则各填料层的pH值迅速升高,并且没有观察到亚硝态氮以及硝态氮含量的增加,因此其不具备进一步降解氨的能力.  相似文献   

18.
Duan H  Koe LC  Yan R  Chen X 《Water research》2006,40(14):2629-2636
Biological treatment is an emerging technology for treating off-gases from wastewater treatment plants. The most commonly reported odourous compound in off-gases is hydrogen sulfide (H(2)S), which has a very low odor threshold. This study aims to evaluate the feasibility of using a biological activated carbon as a novel packing material, to achieve a performance-enhanced biofiltration processes in treating H(2)S through an optimum balance and combination of the adsorption capacity with the biodegradation of H(2)S by the bacteria immobilized on the material. The biofilm was mostly developed through culturing the bacteria in the presence of carbon pellets in mineral media. Scanning electron microscopy (SEM) was used to identify the biofilm development on carbon surface. Two identical laboratory scale biofilters, one was operated with biological activated carbon (BAC) and another with virgin carbon without bacteria immobilization. Various concentrations of H(2)S (up to 125 ppmv) were used to determine the optimum column performance. A rapid startup (a few days) was observed for H(2)S removal in the biofilter. At a volumetric loading of 1600 m(3)m(-3)h(-1) (at 87 ppmv H(2)S inlet concentration), elimination capacity of the BAC (181 gH(2)Sm(-3)h(-1)) at removal efficiency (RE) of 94% was achieved. If the inlet concentration was kept at below 30 ppmv, high H(2)S removal (over 99%) was achieved at a gas retention time (GRT) as low as 2s, a value, which is shorter than most previously reported for biofilter operations. The bacteria population in the acidic biofilter demonstrated capacity for removal of H(2)S in a broad pH range (pH 1-7). There are experimental evidences showing that the spent BAC could be re-used as packing material in a biofilter based on BAC. Overall, the results indicated that an unprecedented performance could be achieved by using BAC as the supporting media for H(2)S biofiltration.  相似文献   

19.
贝壳填料曝气生物滤池的硝化特性研究   总被引:7,自引:1,他引:7  
贝壳粗糙的表面及其合有的大量碳酸钙,可作为生物膜的载体及硝化反应的碱度来源。以海产弃物贝壳为生物膜载体,通过改变进水氨氮浓度及pH值,考察了贝壳填料曝气生物滤池的硝化脱氮规律。结果表明:对于氨氮〈120mg/L的原水,贝壳溶解提供的碱度能够满足硝化反应的需要,因此硝化反应进行得比较完全,对氨氮的去除率不受进水氨氮浓度的影响,可达90%以上;而当进水氨氮浓度达240mg/L时,因贝壳溶解提供的碱度不能完全满足硝化反应之所需,硝化反应将停滞,但对氨氮的去除率仍可达65%左右。此外,进水pH值对贝壳填料曝气生物滤池去除氨氮的效果及出水pH值基本没有影响。  相似文献   

20.
交替曝气时间对两级生物滤池除磷的影响   总被引:3,自引:1,他引:2  
交替曝气时间是影响新型两级生物滤池工艺除磷效果的关键因素。在四种不同的厌氧/好氧交替曝气时间下,考察了该工艺对TP的去除效果。试验结果表明:交替曝气时间为12h时除磷效果最好,对TP的平均去除率为80.18%,平均出水TP为0.94mg/L,达到了《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级B标准;厌氧释磷的最佳反应时间是9h,好氧吸磷的最佳反应时间是6h,除磷率最高可达87.65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号