首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Modification of the microwave dielectric properties in Ba6−3 x Nd8+2 x Ti18O54 ( x = 0.5) solid solutions by Bi/Sm cosubstitution for Nd was investigated. A large increase in the dielectric constant and near-zero temperature coefficient combined with high Qf values were obtained in modified Ba6−3 x Nd8+2 x Ti18O54 solid solutions where an enlarged solid solution limit of Bi in Ba6−3 x Nd8+2 x Ti18O54 was observed. Excellent microwave dielectric characteristics (ɛ= 105, Qf = 4110 GHz, and very low τf) were achieved in the composition Ba6−3 x (Nd0.7Bi0.18Sm0.12)8+2 x Ti18O54.  相似文献   

2.
Tin (Sn) substitution for titanium (Ti) was investigated in Ba6−3 x Nd8+2 x Ti18O54 ( x =1/2, 2/3, and 3/4) ceramics. A small amount ( z <0.1) of Sn substitution resulted in Ba6−3 x Nd8+2 x (Ti1− z Sn z )18O54 solid solutions, and some secondary phases were observed with increasing Sn content. A small amount of Sn substitution improved the Q f value significantly, while, due to the formation of secondary phases, the Q f value degraded sharply for larger Sn content. The relative dielectric constant (ɛr) decreased with increasing Sn-content, while the temperature coefficient of resonant frequency (τf) generally decreased, although an obvious fluctuation was observed for x =3/4.  相似文献   

3.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

4.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

5.
Microwave dielectric properties and far-infrared reflectivity spectra of the 0.3CaTiO3–0.7Li(1/2)−3 x Sm(1/2)+ x TiO3 ceramics were investigated as a function of Sm3+ substitution (0.0 ≤ x ≤ 0.12). The dielectric constant decreased as the Sm3+ substitution increased. The Q × f value increased, up to a solid-solution limit at x = 0.11, because of the change of vibration modes between the A-site cation and the TiO6 octahedron, and then decreased because of the formation of a secondary phase (Sm2Ti2O7). On the analysis of the far-infrared reflectivity spectra, in the 50–4000 cm−1 range, the change of the dielectric loss and dielectric constant could be explained by the intrinsic factor.  相似文献   

6.
Attempts have been made to synthesize the compositions with x = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50 in the valence-compensated solid-solution Ba1–xLaxTi1–xNixO3 by ceramic methods. Solid solutions formed in the compositions with x0.10. The structure of the composition with x = 0.01 is tetragonal, whereas samples with x = 0.05 and 0.10 are cubic. A ferroelectric-paraelectric transition is observed only in the composition with x = 0.01 at ∼ 350 K.  相似文献   

7.
Samples of 1/6Ba5Nb4O15·5/6BaNb2O6 along with the pure end members, Ba5Nb4O15 and BaNb2O6, were sintered under low oxygen partial pressure. The degradation mechanisms of dielectric loss in this reducing atmosphere have been studied. We found that the degradation occurred primarily due to the formation of oxygen vacancies caused by the reduction of Nb5+. This was determined by measuring the electrical conductivity, and through X-ray photoelectron spectroscopy. More importantly, the dielectric loss of 1/6Ba5Nb4O15·5/6BaNb2O6 samples with higher temperature stability was further decreased on sintering in a reducing atmosphere. This observation has been explained by considering the increased porosity and formation of a reduced second phase, Ba0.65NbO3.  相似文献   

8.
Ba2Bi4Ti5O18 single crystals were grown, and their dielectric permittivity, conductivity, and ferroelectricity were investigated along the a -(or b -)axis and the c -axis separately. The dielectric permittivity at 1 MHz along the a -(or b -)axis was 2000 at the Curie temperature (360°C); this value was 8 times greater than that along the c -axis. The dc conductivity was greater along the a -(or b -)axis than that along the c -axis, by one order of magnitude. In regard to the ferroelectricity, the saturated remanent polarization was 120 mC/m2 and the saturated coercive field was 3 MV/m along the a -(or b -)axis; values of 8.5 mC/m2 and 0.81 MV/m, respectively, were observed along the c -axis. The Ba2Bi4Ti5O18 single crystals had large electrical anisotropies, which were due to the layered structure.  相似文献   

9.
The space group of the solid solution phase Ba6-3 x -RE8+2 x Ti18O54(RE = rare-earth cation) has been variously reported as Pba 2 (No. 32), Pbn 21(No. 33), Pbam (No. 55), or Pbnm (No. 62). New results are presented here which indicate that its correct space group assignment may be Pb 21 m (No. 26).  相似文献   

10.
The compositional dependence of microwave dielectric properties has been investigated in the (1 − x )(Na1/2Nd1/2)TiO3− x Nd(Mg1/2Ti1/2)O3 (NNT-NMT) system. The addition of NMT results in significant improvement in the quality factor and the temperature coefficient of frequency, but gradually decreases the dielectric constant from ∼100 for pure NNT to ∼25 for pure NMT. The single perovskite phase is observed with various { hkl } superlattice reflections over the entire compositional range. The increasing tendency of peak splitting with increasing x at some perovskite reflections strongly suggests that the crystal structure of the system changes to lower symmetry structures. This is confirmed using infrared reflectivity spectra. The superlattice reflections related to structural deviation become more predominant as the composition reaches pure NMT. Particularly, {111} superlattice reflections are believed to be associated with the 1:1 cation ordering and responsible for the observed abrupt increase in quality factor at x > 0.7.  相似文献   

11.
Dielectric ceramics in the system (Zn1− x Co x )TiO3 ( x = 0–1) were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized by using powder X-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150°C; [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.7, and [ilmenite] phase at 0.7 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Co content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The ilmenite phase appeared for high Co content. The microwave dielectric properties depended on the phase composition and volume according to the three phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Co addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 25, a Q * f 70 000 GHz, and a low temperature coefficient of the resonant frequency.  相似文献   

12.
Ba6−3 x Sm8+2 x Ti18O54 ( x =2/3) (BST) was prepared by the solid-state method and the effect of bismuth borate (BB)/LiF on the sinterability, microstructure, and thermal and microwave dielectric properties were studied. BST+3.5 wt% BB+0.5 wt% LiF composite sintered at 1050°C has Q × f =4500 GHz, ɛ=52, and τ f =+6 ppm/°C. Raman spectrum of the composite was compared with that of BST and the structural changes were investigated.  相似文献   

13.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

14.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

15.
Nanopowders of Bi2Ti2O7 were synthesized by a metallorganic decomposition (MOD) technique. Pure Bi2Ti2O7 nanocrystals formed after annealing at 550°C for 5 min. X-ray patterns show that Bi20TiO32 is a metastable phase during Bi2Ti2O7 formation. It was found that there were two peaks in the curves of the dielectric response as a function of temperature for pressed nanocrystalline Bi2Ti2O7 samples. The Curie temperature decreases with decrease of grain size whereas the ferroelectric-ferroelectric phase transition temperature increases. The hysteresis loops observed also suggest that Bi2Ti2O7 might belong to a ferroelectric material.  相似文献   

16.
The BiVO4 additive was found effective for low-temperature firing of ZnNb2O6 polycrystalline ceramics below 950°C in air without a serious degradation in their microwave dielectric properties. Dense BiVO4-doped ZnNb2O6 samples of a relative sintered density over 95% could be prepared even at 925°C. An optimally processed specimen exhibited excellent microwave dielectric properties of Q · f = 55000 GHz, ɛr= 26, and τf=−57 ppm/°C. With increasing BiVO4 addition up to 20 mol% relative to ZnNb2O6, while the quality factor Q · f was gradually decreased, the relative dielectric constant, ɛr, was linearly increased and the temperature coefficient of resonant frequency, τf, was slightly increased. The variations in Q · f and ɛr are surely attributable to the residual BiVO4 in the ZnNb2O6 matrix. An unexpected slight increase in τf is probably due to the formation of the Bi(V,Nb)O4-type solid solution.  相似文献   

17.
Thermal expansion behaviors of Ba6−3 x Ln8+2 x Ti18O54 (Ln=La, Nd, and Sm, x =0.5, 0.67, and 0.75) ceramics were determined by dilatometric measurement. The samples of all investigated compositions expanded nearly linearly with increasing temperature in the range of 20°–1200°C. Their thermal expansion coefficients were determined to be 10.7–11.4 ppm/°C. A discontinuous change in sample size was observed at about 1350°C for each composition, indicating the existence of a phase transition. As determined by the high-resolution X-ray diffraction analysis, the phase constitution and the lattice parameters of Ba6−3 x Sm8+2 x Ti18O54 ceramics were maintained in the quenched samples. The origin of the phase transition was discussed thoroughly. Phase equilibrium in the BaTiO3–Ln2/3TiO3 system was reviewed by considering the phase transition.  相似文献   

18.
Single-phase polycrystalline microwave dielectric ceramics Ba6Ti1− x Sn x Nb4O18, with x changing from 0 to 1, were synthesized by the solid-state reaction method. All the solid solutions fitted well with A6B5O18 cation-deficient hexagonal perovskite structure. The substitution of Sn for Ti effectively enhanced the quality factor and controlled τf. With increasing Sn content, the dielectric constant decreased from ∼47 to ∼32, and the Q × f value increased significantly from 11 530 to 28 496 GHz, with τf varying from 64 to 0 ppm/°C. A zero τf was realized when Sn was fully replaced by Ti with the composition Ba6SnNb4O18.  相似文献   

19.
20.
A solid-solution phase with the general formula Ba6-3x Nd8+2x Ti18O54, where 0.25(5) ≤×≤ 0.75(5), has been characterized at 1250°C; this phase has been variously described as BaNd2Ti4O12 and BaNd2Ti5O14 in the literature. Variation in its stoichiometry is accommodated via the cation substitution mechanism, 3Ba2⇆2Nd3+. The location and extent of the solid solution were demonstrated by a combination of phase diagram studies and X-ray diffraction techniques, including lattice parameter measurements and electron microscopy. A combination of techniques was employed due to the insensitivity of secondary phase detection by X-ray diffraction in this system. Using this approach, a second possible solid-solution mechanism, Ba2+2Nd3+⇆2Ti4+, is discounted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号