首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
针对3D分组密码算法的安全性分析,对该算法抵抗中间相遇攻击的能力进行了评估。基于3D算法的基本结构及S盒的差分性质,减少了在构造多重集时所需的猜测字节数,从而构建了新的6轮3D算法中间相遇区分器。然后,将区分器向前扩展2轮,向后扩展3轮,得到11轮3D算法中间相遇攻击。实验结果表明:构建区分器时所需猜测的字节数为42 B,攻击时所需的数据复杂度约为2497个选择明文,时间复杂度约为2325.3次11轮3D算法加密,存储复杂度约为2342 B。新攻击表明11轮3D算法对中间相遇攻击是不免疫的。  相似文献   

2.
FOX是基于Mediacrypt公司的需求而设计的系列分组密码。为进一步评估FOX密码的安全性,主要研究FOX密码抗中间相遇攻击的能力,根据其加密算法的结构,给出FOX64的3轮和4轮中间相遇区分器,以及FOX128的3轮中间相遇区分器。通过分别在以上区分器后加适当的轮数,对4到8轮的FOX64和4、5轮的FOX128进行中间相遇攻击,并给出攻击结果。结果证明了8轮FOX64/256是不安全的。同时表明,5轮FOX64/128、7轮FOX64/192、8轮FOX64/256和5轮FOX128/256均不能抵抗中间相遇攻击。  相似文献   

3.
轻量级分组密码由于软硬件实现代价小且功耗低,被广泛地运用资源受限的智能设备中保护数据的安全。Midori是在2015年亚密会议上发布的轻量级分组密码算法,分组长度分为64 bit和128 bit两种,分别记为Midori64和Midori128,目前仍没有Midori128抵抗中间相遇攻击的结果。通过研究Midori128算法基本结构和密钥编排计划特点,结合差分枚举和相关密钥筛选技巧构造了一条7轮中间相遇区分器。再在此区分器前端增加一轮,后端增加两轮,利用时空折中的方法,提出对10轮的Midori128算法的第一个中间相遇攻击,整个攻击需要的时间复杂度为2126.5次10轮Midori128加密,数据复杂度为2125选择明文,存储复杂度2105 128-bit块,这是首次对Midori128进行了中间相遇攻击。  相似文献   

4.
刘亚 《计算机应用研究》2020,37(7):2112-2116,2122
分组密码Kalyna在2015年6月被确立为乌克兰的加密标准,它的分组长度为128 bit、256 bit和512 bit,密钥长度与分组长度相等或者是分组长度的2倍,记为Kalyna-b/2b。为了保证该算法在实际环境中能安全使用,必须对其抵抗当下流行的攻击方法中的中间相遇攻击的能力进行评估。通过研究Kalyna-128/256轮密钥之间的线性关系,再结合多重集、差分枚举和相关密钥筛选等技巧构造了四条6轮中间相遇区分器链,在此区分器前端接1轮后端接3轮,再利用时空折中实现了对10轮Kalyna-128/256的中间相遇攻击,攻击所需的数据、时间和存储复杂度分别为2111△个选择明文、2238.63△次10轮加密和2222△个128 bit块。将之前10轮Kalyna-128/256中间相遇攻击最优结果的数据、时间和存储复杂度分别降低了24△倍、214.67△倍和226.8△倍。  相似文献   

5.
根据Rijndael密码的算法结构,构造一个新的5轮相遇区分器:若输入状态的第一个字节可变动,而余下字节固定不变,则通过5轮加密后,算法输出的每个字节差分值均可由输入状态的第一个字节值及25个常量字节以概率2-96确定。基于该区分器,给出一种针对9轮Rijndael-256的中间相遇攻击。分析结果表明,该攻击的数据复杂度约为2128个选择明文数据量,时间复杂度约为2211.6次9轮Rijndael- 256加密。  相似文献   

6.
Robin算法是Grosso等人在2014年提出的一个分组密码算法。研究该算法抵抗不可能差分攻击的能力。利用中间相错技术构造一条新的4轮不可能差分区分器,该区分器在密钥恢复阶段涉及到的轮密钥之间存在线性关系,在构造的区分器首尾各加一轮,对6轮Robin算法进行不可能差分攻击。攻击的数据复杂度为2118.8个选择明文,时间复杂度为293.97次6轮算法加密。与已有最好结果相比,在攻击轮数相同的情况下,通过挖掘轮密钥的信息,减少轮密钥的猜测量,进而降低攻击所需的时间复杂度,该攻击的时间复杂度约为原来的2?8。  相似文献   

7.
段丹青  卫宏儒 《计算机科学》2018,45(2):222-225, 230
MIBS算法是Izadi等于2009年提出的一种轻量级分组密码算法。为进一步评估MIBS算法的安全性,针对MIBS算法抵抗碰撞攻击的能力进行了研究。根据算法的等价结构,构造了MIBS算法的一个6轮区分器,通过依次在此区分器后面增加2轮、在前面增加2轮的方法,对8/9/10轮的MIBS算法进行了碰撞攻击,并给出了相应的攻击过程及复杂度分析。结果表明,8/9/10轮的MIBS算法是不能抵抗碰撞攻击的。  相似文献   

8.
李永光  曾光  韩文报 《计算机科学》2015,42(11):217-221
Crypton密码算法是韩国学者提出的一种AES候选算法。通过研究Crypton算法的结构特征和一类截断差分路径的性质,利用差分枚举技术权衡存储复杂度和数据复杂度,提出了4轮和4.5轮中间相遇区分器。新的区分器减少了预计算表中的多重集数量,降低了存储复杂度。基于4轮区分器首次给出对7轮Crypton-128的中间相遇攻击,时间复杂度为2113,数据复杂度为2113,存储复杂度为290.72。基于4.5轮区分器首次给出对8轮Crypton-192的中间相遇攻击,时间复杂度为2172,数据复杂度为2113,存储复杂度为2138。  相似文献   

9.
《计算机工程》2019,(1):91-95
QARMA算法是一种代替置换网络结构的轻量级可调分组密码算法。研究QARMA算法抵抗相关密钥不可能差分攻击的能力,根据QARMA-64密钥编排的特点搜索到一个7轮相关密钥不可能差分区分器,在该差分区分器的前、后各添加3轮构成13轮相关密钥不可能差分攻击。分析结果表明,在猜测52 bit密钥时,与现有中间相遇攻击相比,该相关密钥不可能差分攻击具有攻击轮数较多、时间复杂度和空间复杂度较低的优点。  相似文献   

10.
为了研究Zodiac算法抵抗碰撞攻击的能力,根据算法的一个等价结构,分别给出了Zodiac算法的两个8轮和9轮区分器。通过在此区分器前后加适当的轮数,首先,利用9轮区分器对12轮到16轮的算法进行了碰撞攻击,其攻击的数据复杂度分别为215,231.2,231.5,231.7,263.9,时间复杂度分别为233.8,249.9,275.1,2108,2140.1;其次,利用8轮区分器对全轮算法进行了攻击,其攻击的数据复杂度和时间复杂度分别为260.6和2173.9。结果表明:全轮的Zodiac-192/256算法均不能抵抗碰撞攻击。  相似文献   

11.
如何针对分组密码标准ARIA给出新的安全性分析是当前的研究热点。基于ARIA的算法结构,利用中间相遇的思想设计了一个新的4轮不可能差分区分器。基于该区分器,结合ARIA算法特点,在前面加2轮,后面加1轮,构成7轮ARIA-256的新攻击。研究结果表明:攻击7轮ARIA-256所需的数据复杂度约为2120选择明文数据量,所需的时间复杂度约为2219次7轮ARIA-256加密。与已有的7轮ARIA-256不可能差分攻击结果相比较,新攻击进一步地降低了所需的数据复杂度和时间复杂度。  相似文献   

12.
We present some known-key distinguishers for a type-1 Feistel scheme with a permutation as the round function. To be more specific, the 29-round known-key truncated differential distinguishers are given for the 256-bit type-1 Feistel scheme with an SP (substitution-permutation) round function by using the rebound attack, where the S -boxes have perfect differential and linear properties and the linear diffusion layer has a maximum branch number. For two 128-bit versions, the distinguishers can be applied on 25-round structures. Based on these distinguishers, we construct near-collision attacks on these schemes with MMO (Matyas-Meyer-Oseas) and MP (Miyaguchi-Preneel) hashing modes, and propose the 26-round and 22-round near-collision attacks for two 256-bit schemes and two 128-bit schemes, respectively. We apply the near-collision attack on MAME and obtain a 26-round near-collision attack. Using the algebraic degree and some integral properties, we prove the correctness of the 31-round known-key integral distinguisher proposed by Sasaki et al. We show that if the round function is a permutation, the integral distinguisher is suitable for a type-1 Feistel scheme of any size.  相似文献   

13.
CRYPTONV1.0密码是一个具有128比特分组长度、128比特密钥的分组密码。CRYP-TONV1.0密码的线性层是基于比特设计的,因而传统的积分攻击无法对其进行分析。本文对CRYP-TONV1.0密码进行分析,从比特的层面上寻找平衡性,得到了一个3轮积分区分器,区分器的可靠性在PC机上进行了验证,该区分器需要1024个明文将3轮CRYPTONV1.0与随机置换区分开来,并且所得密文的每一比特都是平衡的。基于该区分器,对低轮CRYPTONV1.0密码进行了攻击,结果表明,攻击4轮CRYPTONV1.0密码的数据复杂度为211,时间复杂度为223,攻击5轮的数据复杂度为212.4,时间复杂度为253。  相似文献   

14.
王超  陈怀凤 《计算机工程》2021,47(5):117-123
积分攻击是一种重要的密钥恢复攻击方法,已被广泛应用于多种分组算法分析任务。Midori64算法是一种轻量级分组密码算法,为对其进行积分攻击,构建3个6轮零相关区分器,将其分别转化为6轮平衡积分区分器并合成为一个性质优良的6轮零和积分区分器,将该零和积分区分器向前扩展1轮得到一个7轮零和积分区分器。分别采用部分和技术与快速Walsh-Hadamard变换技术,得到Midori64算法的10轮积分攻击和11轮积分攻击。分析结果表明,10轮积分攻击的数据复杂度为240个明密文对,时间复杂度为267.85次10轮加密运算,11轮积分攻击的数据复杂度为240.09个明密文对,时间复杂度为2117.37次11轮加密运算。  相似文献   

15.
官翔  杨晓元  魏悦川  刘龙飞 《计算机应用》2014,34(10):2831-2833
针对目前对SNAKE算法的安全性分析主要是插值攻击及不可能差分攻击,评估了SNAKE(2)算法对积分攻击的抵抗能力。利用高阶积分的思想,构造了一个8轮区分器,利用该区分器,对SNAKE(2)算法进行了9轮、10轮积分攻击。攻击结果表明,SNAKE(2)算法对10轮积分攻击是不免疫的。  相似文献   

16.
黄明  张莎莎  洪春雷  曾乐  向泽军 《软件学报》2024,35(4):1980-1992
混合整数线性规划(MILP)作为一种自动化搜索工具, 被广泛地应用于搜索分组密码的差分、线性、积分等密码性质. 提出一种基于动态选取策略构建MILP模型的新技术, 该技术在不同的条件下采用不同的约束不等式刻画密码性质的传播. 具体地, 从可分性出发根据输入可分性汉明重量的不同, 分别采用不同的方法构建线性层可分性传播的MILP模型. 最后, 将该技术应用于搜索uBlock和Saturnin算法的积分区分器. 实验结果表明: 对于uBlock128算法, 该技术可以搜索到比之前最优区分器多32个平衡比特的8轮积分区分器. 除此之外, 搜索到uBlock128和uBlock256算法比之前最优区分器更长一轮的9和10轮积分区分器. 对于Saturnin256算法, 同样搜索到比之前最优区分器更长一轮的9轮积分区分器.  相似文献   

17.
PRINCE算法是J.Borghoff等在2012年亚密会上提出的一个轻量级分组密码算法,它模仿AES并采用α-反射结构设计,具有加解密相似的特点.2014年,设计者发起了针对PRINCE实际攻击的公开挑战,使得该算法的安全性成为研究的热点.目前对PRINCE攻击的最长轮数是10轮,其中P.Derbez等利用中间相遇技术攻击的数据和时间复杂度的乘积D×T=2125,A.Canteaut等利用多重差分技术攻击的复杂度D×T=2118.5,并且两种方法的时间复杂度都超过了257.本文将A.Canteaut等给出的多重差分技术稍作改变,通过考虑输入差分为固定值,输出差分为选定的集合,给出了目前轮数最长的7轮PRINCE区分器,并应用该区分器对8轮PRINCE进行了密钥恢复攻击.本文的7轮PRINCE差分区分器的概率为2-56.89,8轮PRINCE的密钥恢复攻击所需的数据复杂度为261.89个选择明文,时间复杂度为219.68次8轮加密,存储复杂度为215.21个16比特计数器.相比目前已知的8轮PRINCE密钥恢复攻击的结果,包括将A.Canteaut等给出的10轮攻击方案减少到8轮,本文给出的攻击方案的时间复杂度和D×T复杂度都是最低的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号