首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This article proposes an automatic longitudinal deceleration based method for multi-wheel vehicle rollover safety in autonomous mode. The information of lateral acceleration and vehicle roll angle is used to generate the longitudinal acceleration at which the vehicle will remain stable to rollover. The lateral and roll dynamics are coupled with longitudinal dynamics using a potential field function for lateral acceleration. This virtual potential field is developed on g-g diagram which represents vehicle portrait of lateral and longitudinal acceleration on abscissa and ordinate respectively. The motion of vehicle is represented by a point moving on this phase portrait of g-g diagram. TruckSim model of multi-wheel military vehicle with in-wheel motors is used with this algorithm which shows that the vehicle is less susceptible to rollover. The safe longitudinal acceleration is achieved by torque control of in-wheel motors fitted in each wheel. Using this method, the vehicle followed the desired trajectory as higher speeds which are safe. This is particularly useful for vehicle autonomous driving with rollover stability.

  相似文献   

2.
This paper presents a method for designing a controller that uses an active anti-roll bar (AARB) and an electronic stability program (ESP) for rollover prevention. ESP with longitudinal speed control (LSC) can carry out active braking to reduce vehicle speed and lateral acceleration to prevent a rollover. To enhance the rollover prevention capability of the ESP, an AARB is adopted. The controller for the AARB was designed based on linear quadratic (LQ) static output feedback (SOF) control methodology, which attenuates the effect of lateral acceleration on the roll angle and roll rate by control of the suspension stroke and the tire deflection of the vehicle. Although this AARB significantly increases ride comfort and rollover prevention, it has a drawback — the vehicle loses its maneuverability. Therefore, the ESP with LSC is used to overcome this drawback. Simulations showed that the proposed method was effective in preventing a rollover.  相似文献   

3.
建立了重型车辆三自由度车辆模型,经过鱼钩工况仿真验证,确定此模型比较准确,可用于预警系统的仿真研究;以横向载荷转移率(LTR)预警门限值为参考值,应用经典卡尔曼滤波原理对车辆运行状态进行实时估计,实时计算出反映侧倾危险的侧翻时刻,从而开发了一套对重型车辆进行观测的侧翻预警系统。经在高附着路面上进行实车试验,设LTR预警门限值为0.2,侧翻时刻为3s,并在侧向加速度为0.2的条件下,该系统能及时做出预报,说明此系统有效可靠。  相似文献   

4.
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model. A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration. The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out, which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.   相似文献   

5.
In this paper we present an observer–based nonlinear controller for lateral and yaw velocity, for a vehicle in which the roll dynamics can not be neglected. The observer estimates the lateral velocity, and the roll position and velocity. This technique is based on measurements of the longitudinal and lateral accelerations, longitudinal velocity, yaw rate and steer angle, usually available in modern vehicles. The nonlinear observer ensures exponential convergence of the estimations. The test maneuvers, obtained with the full–vehicle CarSim model under different road adhesion conditions, have been used to check the controller performance, as well as its robustness with respect to parameter variations.  相似文献   

6.
重型车辆侧翻预警算法研究   总被引:2,自引:0,他引:2  
针对重型车辆在行驶过程中非绊倒型侧翻预警实现问题,建立了三自由度车辆侧翻模型并设计了以侧翻时间(TTR)为预警标准的算法。考虑到预警算法中动态门限值中某些参数难于直接测取的问题,将Kalman滤波技术融合于其中,提出了基于车身侧倾角估计的TTR侧翻预警算法,实现车辆动态侧翻特性的精确预测。而后利用Matlab/Simulink与Trucksim软件联合仿真对侧翻预警算法进行验证。结果表明,基于车身侧倾角估计的重型车辆侧翻预警算法能够顺利运行,为非绊倒型侧翻预警问题提供了一种新的设计思路。  相似文献   

7.
This paper proposes a robust observer concept for joint estimation of system states and model parameters related to the roll dynamics of a vehicle. Using sliding mode concepts introduces robustness to parametric uncertainties and also allows reconstruction of the latter. These model parameters are of interest for vehicle dynamics assessment and estimation of the roll angle. A novel classification concept exploits these parameter estimates for assessing the roll dynamics. An additional benefit of the proposed method is the minimal requirement of measurement equipment as it only relies on cost-efficient angular rate and acceleration sensors. Evaluation of the framework is performed in simulations and real-world using an experimental vehicle.  相似文献   

8.
车辆质心侧偏角是描述车辆侧向运动状态的重要参量之一,其估计的精度直接影响车辆的安全控制,传统的质心侧偏角估计方法不能满足非结构道路环境下的智能汽车质心侧偏角估计的要求。通过建立3自由度智能汽车动力学模型,采用CarSim和MATLAB构建智能汽车整车参数化模型;基于扩展kalman滤波(EKF)算法,设计非结构道路环境下的状态观测器对智能汽车质心侧偏角进行估计。在高、低附着系数路面双移线工况和蛇形工况下,对状态观测器的估计效果进行联合仿真验证。仿真结果表明:该方法能较精确地估计出非结构道路环境下智能汽车的质心侧偏角。  相似文献   

9.
Four wheel steering control by fuzzy approach   总被引:1,自引:0,他引:1  
This study introduces a fuzzy four-wheel steering control design method for automotive vehicles. After the analysis of some stability aspects of the vehicle lateral motion, including front steering angle variations, the representation of vehicle nonlinear model by Takagi-Sugeno (T-S) fuzzy model is presented. Next, based on the fuzzy model, a fuzzy controller is developed to improve the stability of the vehicle. Sufficient conditions for stability and stabilization of the T-S fuzzy model using fuzzy feedback controllers is given. To demonstrate the effectiveness of the proposed fuzzy controller, simulation results are given showing the performance improvements of the vehicle in terms of the stability and the maneuverability in critical situations.  相似文献   

10.
基于Uni-Tire轮胎模型的车辆质心侧偏角估计   总被引:2,自引:0,他引:2  
针对车辆质心侧偏角估计的准确性和实时性能问题,提出了车辆质心侧偏角估计的非线性全维观测器设计方法.首先基于车辆动力学模型及纵滑-侧偏联合工况下的Uni-Tire轮胎模型,利用车载传感器测量车辆状态;观测器利用这些状态估计出车辆的纵向速度、侧向速度及横摆角速度,并由此得到车辆的质心侧偏角估计.其次利用输入-状态稳定(input-to-state stability,ISS)理论对观测器的稳定性进行了分析.最后采用红旗CA7180A3E型轿车的车辆参数使用车辆仿真软件veDYNA对极限工况下的估计结果进行了离线仿真研究,并利用xPC-Target仿真环境和dSPACE实时仿真系统搭建仿真平台,对非线性全维观测器的实时性进行验证.仿真结果表明,非线性估计方法估计精度较高,实时性较好,可以满足工程应用的要求.  相似文献   

11.
《Advanced Robotics》2013,27(12):1267-1285
Most active devices focused on vehicle stability concern on-road cars and cannot be applied satisfactorily in an off-road context, since the variability and the non-linearities of tire/ground contact are often neglected. In previous work, a rollover indicator devoted to light all-terrain vehicles accounting for these phenomena has been proposed. It is based on the prediction of the lateral load transfer. However, such an indicator requires the on-line knowledge of the tire cornering stiffness. Therefore, in this paper, an adapted backstepping observer, making use only of yaw rate measurement, is designed to estimate tire cornering stiffness and to account for its non-linearity. The capabilities of such an observer are demonstrated and discussed through both advanced simulations and actual experiments.  相似文献   

12.
基于滑模观测器的车辆电子稳定性控制系统故障重构   总被引:1,自引:0,他引:1  
针对车辆电子稳定性控制系统的横摆角速度传感器和侧向加速度传感器故障检测和重构问题,使用T-S模糊系统建立了车辆动力学系统的全局模型,依据滑模控制理论,给出了基于滑模观测器的传感器故障检测和重构方法,且所设计观测器满足给定的从未知输入到故障重构误差的L2增益性能要求.最后通过实测数据,验证了方法是可行的.  相似文献   

13.
汽车侧翻预警及防侧翻控制   总被引:3,自引:0,他引:3  
为了减少汽车侧翻事故,提出了一种基于模型的汽车侧翻预警算法以及在预警基础上的防侧翻控制算法.预警算法通过三自由度线性汽车侧翻模型计算将来一段时间内汽车横向载荷转移律的绝对值,由侧翻条件得到侧翻危险时间;控制算法根据预警时间来触发比例-微分控制器对汽车实施控制.结果表明,预警算法能够及时准确预测汽车侧翻危险,而控制方法可以更好地发挥制动器效能,防止汽车侧翻.  相似文献   

14.
为了防止汽车在行驶过程中发生侧翻,使汽车始终处在安全工况下行驶,减少交通事故,设计了一种基于ARM9的智能车载感知和侧翻预警系统,对汽车在途行驶时的侧倾角和侧倾角速度进行监测,并采用多阶递推模型对汽车侧倾姿态进行预测,当预测到侧倾达到极限工况时发出报警信息,提醒驾驶人员注意并采取相应减少侧向加速度的措施,从而达到预防汽车侧翻事故的发生,并基于VB2005,Matlab和NIMeasurement Studio开发了车载感知与侧翻预警系统软件,进行了系统仿真。实车道路试验与系统仿真实验进行了比较,结果表明:车载感知和预警系统能够及时准确预测汽车侧翻,提高汽车主动安全。  相似文献   

15.
针对道路的几何线形,特别是纵坡坡度与弯道半径对车辆行驶状态的影响,建立了车路耦合的8自由度山区道路行驶的车辆动力学模型以及Dugoff轮胎力模型.结合车载GPS/IMU的测量信息,解算了不同车轮的滑移率以及垂直载荷,并通过横向载荷转移率(LLTR)对车辆的行驶稳定性进行分析.结果表明:车辆行驶过程中的侧向加速度与道路纵坡坡度以及车辆重心高度与宽度的比率h/T有关,坡度越陡,h/T越大,侧向加速度越大,车辆的行驶稳定性越差,降低车辆的行驶速度与侧向加速度可提高车辆的行驶稳定性.  相似文献   

16.
提出了一种新型的基于滑模观测器理论的汽车轮胎力级联估计方法.首先基于单轮滚动动力学模型,以车轮转动角速度及驱动力矩作为输入,针对每个车轮的纵向轮胎力设计了纵向轮胎力滑模观测器.又采用了简化的车辆2自由度模型,以纵向轮胎力估计值、 前轮转角、 侧向加速度及横摆角速度作为输入,分别设计了前、 后轴侧向轮胎力滑模观测器.最后,为验证所设计的观测器的有效性,应用高保真车辆动力学软件veDYNA进行了仿真研究,并与扩展卡尔曼滤波(extendedKalman filter,EKF)方法进行了对比分析.实验结果表明,基于滑模观测器的车辆轮胎力级联估计方法具有更高的准确性.  相似文献   

17.
18.
The current research on vehicle stability control mainly focuses on following the ideal yaw rate and sideslip angle, without considering the potential of ideal roll angle in improving the vehicle stability. In addition, the mutation of tire-road friction coefficient promotes a great challenge to the stability control. To improve the vehicle stability, in this study, firstly, the three-dimensional stability region of “lateral speed-yaw rate-roll angle” was studied, and a method to determine the ideal roll angle was proposed. Secondly, a novel integrated control framework of AFS, ASS, and DYC based on ideal roll angle was proposed to actively control the front tire slip angles, suspension forces, and motor torques: In the upper-level controller, model predictive control and tire force distribution algorithm were used to obtain the optimal four-tire longitudinal forces, front tire lateral forces and additional roll moment under constraints; In the lower-level controller, the upper virtual target was realized by the optimal allocation algorithm of actuators and the tire slip controller. Finally, the proposed control framework was verified on the varied-µ road. The results indicated that compared with the two existing control strategies, the proposed framework can significantly improve the vehicle following performance and stability.  相似文献   

19.
为提高负载型四足步行平台对角步态行走的稳定性,减小较大的腿部质量及偏心质量对稳定行走的影响,提出融合重心动力学及虚拟模型的控制方法.应用虚拟模型控制方法对机身及摆动腿加速度进行求解.结合平台重心动力学模型得到其所受合外力,而后应用二次规划将平台合外力分配到支撑腿足端.接着运用逆向动力学和关节空间PD控制得到步行平台关节力矩.通过Adams和Simulink对负载型四足步行平台对角步态行走进行仿真,并将该方法与虚拟模型控制算法进行对比.结果表明重心动力学及虚拟模型控制方法能够使平台姿态角稳定在目标值附近,在平台受到侧向冲击情况下横滚角、俯仰角分别减小约42%、21.8%,在机身偏心全向行走过程中减小50%、89%.证明了所提控制方法能够有效应对较大的腿部质量及偏心质量的影响,提高负载型四足步行平台对角步态行走的稳定性和鲁棒性.  相似文献   

20.
Vehicle state estimation during anti-lock braking is considered. A novel nonlinear observer based on a vehicle dynamics model and a simplified Pacejka tire model is introduced in order to provide estimates of longitudinal and lateral vehicle velocities and the tire-road friction coefficient for vehicle safety control systems, specifically anti-lock braking control. The approach differs from previous work on vehicle state estimation in two main respects. The first is the introduction of a switched nonlinear observer in order to deal with the fact that in some driving situations the information provided by the sensor is not sufficient to carry out state estimation (i.e., not all states are observable). This is shown through an observability analysis. The second contribution is the introduction of tire-road friction estimation depending on vehicle longitudinal motion. Stability properties of the observer are analyzed using a Lyapunov function based method. Practical applicability of the proposed nonlinear observer is shown by means of experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号