首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research Progress of Tip Winglet Technology in Compressor   总被引:1,自引:0,他引:1  
In the present study,the research progress of tip winglets that control tip clearance leakage flow in compressors is reviewed.Firstly,the effects of tip leakage flow on the aerodynamic performance of the compressor are presented.Subsequently,the development of tip winglet technology is reviewed.Next,a series of studies on compressor tip winglet technology are conducted.Besides,the effects of tip winglets on the aerodynamic performance of rectangular cascades of low-speed and high-subsonic compressors,subsonic compressor rotor and transonic compressor rotor are discussed,respectively,and the control effect of tip winglet technology combined with tip groove design on tip leakage is investigated.Lastly,the subsequent development direction and research prospect of compressor tip winglet technology are presented.  相似文献   

2.
This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri- cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com- pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak- age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss.  相似文献   

3.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

4.
为研究间隙变化对轴流压气机转子近失速工况下叶顶流场结构的影响,以轴流压气机转子Rotor37为研究对象,对其叶顶流场进行定常和非定常的数值模拟。计算结果表明:随着叶顶间隙的减小,压气机的总压比和等熵效率均有所提高,稳定运行范围扩大;2倍设计间隙下,叶尖泄漏涡经激波作用后发生膨胀破碎,堵塞来流通道,诱发压气机堵塞失速;0.5倍设计间隙下,吸力面流动分离加剧,发生回流,部分回流与来流在压力面前缘上游发生干涉,进口堵塞加剧,致使部分来流从前缘溢出,导致压气机叶尖失速;不同间隙下压气机失速过程的主导因素不同,大间隙下失速由叶尖泄漏涡破碎的非定常波动引起,小间隙下失速主要由流动分离引发的周期性前缘溢流所主导。  相似文献   

5.
Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design a CT with high aerodynamic performance. In the paper, a highly-loaded mixed-flow compressor with tip clearance of 0.4 mm was numerically studied at a rotational speed of 30,000 r/min to reveal the effects of axial slot casing treatment(ASCT) on the loss mechanisms in the compressor. The results showed that both isentropic efficiency and stall margin were improved significantly by the ASCT. The local entropy generation method was used to analyze the loss mechanisms and to quantify the loss distributions in the blade passage. Based on the axial distributions of entropy generation rate, for both the cases with and without ASCT, the peak entropy generation rate increased in the rotor domain and decreased in the stator domain during throttling the compressor. The peak entropy generation in rotor was mainly caused by the tip leakage flow and flow separations near the rotor leading edge for the mixed-flow compressor no matter which casing was applied. The radial distributions of entropy generation rate showed that the reduction of loss in the rotor domain from 0.4 span to the rotor casing was the major reason for the efficiency improved by ASCT. The addition of ASCT exerted two opposite effects on the losses generated in the compressor. On the one hand, the intensity of tip leakage flow was weakened by the suction effect of slots, which alleviated the mixing effect between the tip leakage flow and main flow, and thus reduced the flow losses; On the other hand, the extra losses upstream the rotor leading edge were produced due to the shear effect and to the heat transfer. The aforementioned shear effect was caused by the different velocity magnitudes and directions, and the heat transfer was caused by temperature gradient between the injected flow and the incoming flow. For case with smooth casing(SC), 61.61% of the overall loss arose from tip leakage flow and casing boundary layer. When the ASCT was applied, that decreased to 55.34%. The loss generated by tip leakage flow and casing boundary layer decreased 20.54% relatively by ASCT.  相似文献   

6.
Full-annulus three-dimensional unsteady numerical simulations were conducted for a low-speed isolated axial compressor rotor, intending to identify the behavior of self-induced unsteady tip leakage flow within multi-blade passages. There is a critical mass flow rate near stall point, below it, the self-induced unsteadiness of tip leakage flow can propagate circumferentially and thus initiates two circumferential waves. Otherwise, the self-induced unsteady tip leakage flow oscillates synchronously in each single blade passage. The major findings are: 1) while the self-induced unsteadiness of tip leakage flow is a single-passage phenomenon, there exist phase shifts among blade passages in multi-passage environments then evolving into the first short length wave propagating at about two times of rotor rotation speed after the transient period ends; and 2) the time traces of the pseudo sensors located on the rotor blade tips reveal another much longer length-scale wave modulated with the first wave due to phase shift propagating at about half of rotor rotation speed. Features of the short and long length-scale circumferential waves are similar to those of rotating instability and modal wave, respectively.  相似文献   

7.
Tip leakage flow has become one of the major triggers for rotating stall in tip region of high loading transonic compressor rotors.Comparing with active flow control method,it’s wise to use blade tip modification to enlarge the stable operating range of rotor.Therefore,three pressure-side winglets with the maximum width of 2.0,2.5 and 3.0 times of the baseline rotor,are designed and surrounded the blade tip of NASA rotor 37,and the three new rotors are named as RPW1,RPW2,and RPW3 respectively.The numerical results show that the width of pressure-side winglet has significant influence on the stall margin and the minimum throttling massflow of rotor,while it produces less effect on the choking massflow and the peak efficiency of new rotors.As the width of the pressure-side winglet increases from new rotor RPW1 to RPW3,the strength of leakage massflow has been attenuated dramatically and a reduction of 20%in leakage massflow rate has appeared in the new rotor RPW3.By contrast,the extended blade tip caused by winglet has not introduced much more aerodynamic losses in tip region of rotor,and the new rotors with different width of pressure-side winglet have the similar peak efficiency to the baseline.The new shape of the leakage channel over blade tip which replaces of the static pressure difference near blade tip has dominated the behavior of the leakage flow in tip gap.As both the new aerodynamic boundary and throat in tip gap have reshaped by the low-velocity flow near the solid wall of extended blade tip,the discharging velocity and massflow rate of leakage flow have been suppressed obviously in new rotors.In addition,the increasing inlet axial velocity at the entrance of new rotor has increased slightly as well,which is attributed to the less blockage in the tip region of new rotor.In consideration of the increased inlet axial velocity and the weakened leakage flow,the new rotor presents an appropriately linear increase of the stall margin when the width of pressure-side winglet increases,and has a nearly 15%increase in new rotor RPW3.  相似文献   

8.
基于控制变量法对某跨音速离心压气机进行数值模拟,研究了叶轮尾缘叶间隙改变对其气动性能的影响。仅改变该离心叶轮的尾缘叶顶间隙,在设计转速下进行全三维黏性数值模拟,对相关气动参数进行分析。计算结果表明,相较于小流量工况,尾缘叶顶间隙的改变对离心压气机大流量工况的气动性能影响更大;在设计流量下,离心叶轮的压比、效率与叶轮尾缘出口间隙大小之间具有一定的线性关系,随着叶尖间隙增大,叶轮叶尖泄漏流的强度明显增强,导致叶轮的增压能力下降。  相似文献   

9.
This study examines how the complex flow structure within a gas turbine rotor affects aerodynamic loss. An unshrouded linear turbine cascade was built, and velocity and pressure fields were measured using a 5-hole probe. In order to elucidate the effect of tip clearance, the overall aerodynamic loss was evaluated by varying the tip clearance and examining the total pressure field for each case. The tip clearance was varied from 0% to 4.2% of blade span and the chord length based Reynolds number was fixed at 2×105. For the case without tip clearance, a wake downstream of the blade trailing edge is observed, along with hub and tip passage vortices. These flow structures result in profile loss at the center of the blade span, and passage vortex related losses towards the hub and tip. As the tip clearance increases, a tip leakage vortex is formed, and it becomes stronger and eventually alters the tip passage vortex. Because of the interference of the secondary tip leakage flow with the main flow, the streamwise velocity decreases while the total pressure loss increases significantly by tenfold in the last 30% blade span region towards the tip for the 4.2% tip clearance case. It was additionally observed that the overall aerodynamic loss increases linearly with tip clearance.  相似文献   

10.
针对高负荷氦气压气机中角区分离、叶顶泄漏严重带来的效率损失问题,以单级氦气压缩机为研究对象,利用CFD方法,分析了不同弯曲角度下氦气压气机内部的角区损失和叶顶泄漏损失,并优化了现有五级轴流氦气压气机。结果表明:叶片正弯会增加端区处的静压,减少角区分离,进而降低角区损失;对动叶而言,在设计攻角下正弯也会增加前缘损失;动叶叶顶反弯使泄漏流远离下一个叶片的压力面,而合适的反弯角度可以降低叶顶泄漏量;选取合适的弯曲角度使五级轴流压气机设计点效率提高1.85%。  相似文献   

11.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

12.
为了研究几何尺寸模化缩放及叶尖间隙对多级轴流压气机气动性能及内部流动的影响,采用Numeca程序对17级轴流压气机开展了数值计算。结果表明:在80%及100%等高转速条件下压气机效率随着模化比例增大而增大,而在50%转速下模化缩放对压气机效率的影响较小。相对于原型压气机,模化放大时,压气机前8级单级压比均有所降低,而后8级压比均提高;模化缩小时,压气机的变化规律则相反。随着压气机几何尺寸的增大,静叶叶根和叶尖区域的总压恢复系数显著提高。同时,叶片叶尖泄漏流区域的熵增减少,从而使各级效率均有所提升。缩放模化中,随着叶尖间隙的增大,泄漏流增多,恶化了动叶叶尖附近的流动分离,降低了动叶后50%弦长区域的相对马赫数,同时扩大了静叶上端壁的流动分离,使压气机效率降低。  相似文献   

13.
For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.  相似文献   

14.
介绍了汽轮机末级动叶叶顶间隙对于汽轮机排汽缸性能的影响,通过耦合末级叶片的排汽缸气动数模拟来考察这一影响,发现排汽缸内的流场情况会随着间隙漏汽量的不同而产生变化,表征气动性能的压力恢复系数也随之变化.研究表明,叶顶间隙射流对于排汽缸内流场的影响是不可忽略的,在以后的排汽缸气动设计及优化工作中需要考虑叶顶漏汽射流.  相似文献   

15.
This paper presents the investigation of the effects of suction side squealer tip on the performance of an axial compressor.The experiment is carried out in a single-stage large-scale low-speed compressor.The investigated tip geometries include flat tip as the baseline and suction side squealer tip.The tip clearance of the baseline is 0.5% of the blade span.The static pressure rise characteristic curves of both the rotor and the stage are measured.The flow field at the exit of the rotor is measured by a 5-hole probe under design and off-design conditions.The static pressure on the endwall of the rotor passage is also obtained.The results show that the pressure rise characteristic curves obtained by measuring the pressure on the end wall are almost unchanged by using the suction side squealer tip.The measuring results of the 5-hole probe show the static pressure and the total pressure in tip region is slightly greater than that of the flat tip at the design condition at the exit of the rotor.It also leads to greater av-eraged static pressure rise and total pressure.At the near stall condition,the averaged static pressure and total pressure is lower than the baseline which is related to the redistribution of the blade load caused by the suction side squealer tip.  相似文献   

16.
为了分析叶顶间隙泄漏涡的影响范围、运行轨迹和强度的变化规律,以某汽轮机高压级为研究对象,采用SSTκ-ω湍流模型,应用PISO算法对叶项间隙内的非定常流动进行了数值模拟.结果表明:叶顶间隙泄漏流是有规律的周期性的非定常流动,泄漏涡的影响范围、运行轨迹和强度随时间和叶顶间隙的变化而变化;泄漏流对主流的影响呈现出从弱到强、再从强到弱的周期性变化规律;叶顶间隙泄漏涡在丁/4时刻的强度和影响范围均达到最大,在T/2时刻,静叶脱落涡和动叶吸力面前部的泄漏涡混合形成新的涡系,而动叶吸力面后部的泄漏涡却与其边界层的脱涡混合,离开吸力面.  相似文献   

17.
Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the un- steadiness exists when the size of the tip clearance is equal to or larger than design tip clearance size. The relative total pressure coefficient contours indicate that region of influence by tip leakage flow augments with the increase of tip clearance size at a fixed mass flow rate. Root Mean Square contours of static pressure distribution in the rotor tip region are provided to illustrate that for design tip clearance (1.1% tip chord) the strongest fluctuating region is located on pressure side of blade near leading edge, while for the larger tip clearance (2.2% tip chord), it is in the region of the interaction between the shock wave and the tip leakage flow.  相似文献   

18.
为了探究零间隙压气机流动失稳机理,采用全通道非定常数值模拟方法研究了一台零间隙斜流压气 机转子的失稳机理,数值模拟过程中在转子出口施加了随时间动态变化的背压模拟压气机转子节流,非定常 数值计算结果表明零间隙斜流压气机转子仍然表现为典型突尖流动失稳特征。通过详细地分析斜流压气机 转子节流过程中不同阀系数对应的压气机内部流场结构,结果表明:尽管零间隙斜流压气机无叶顶泄漏特 征,但随着对压气机节流,转子叶片尾缘率先出现流动分离,进一步节流,尾缘流动分离表现为一方面在周向 范围加剧,另一方面分离点逐渐向上游移动,造成通道严重堵塞,最终引发相邻叶片通道尾缘回流和叶片前 缘流动溢出进而诱发叶片通道内部出现径向涡结构,从而形成压气机突尖失速先兆。  相似文献   

19.
A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolatedaxial compressor rotor is presented,intending to better understand the flow mechanism behind stall control meas-ures that act on tip clearance flow.Under the influence of injection the unsteadiness of self-induced tip clearanceflow could be weakened.Also the radial migration of tip clearance vortex is confined to a smaller radial extentnear the rotor tip and the trajectory of tip clearance flow is pushed more downstream,So the injection is benefi-cial to improve compressor stability and increase static pressure rise near rotor tip region.The results of injectionwith different injected mass flow rates show that for the special type of injector adopted in the paper the effect ofinjection on tip clearance flow may be different according to the relative strength between these two streams offlow.For a fixed injected mass flow rate,reducing the injector area to increase injection velocity can improve theeffect of injection on tip clearance flow and thus the compressor stability.A comparison of calculations betweensingle blade passage and multiple blade passages validates the utility of single passage computations to investi-gate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tipinjection.  相似文献   

20.
某轴流式压气机气动不稳定的相关积分分析   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了某轴流式压气机节流试验中的气动不稳定问题。运用非线性的相关积分方法对压气机机匣壁面沿程静压信号进行了分析。结果表明,压气机静叶通道机匣壁面给定点静压信号的相关积分值随着发动机工作状态的不同有规律的发生变化,反映了对应位置的流动分离状况;压气机沿程各级静叶通道机匣壁面静压的相关积分值可以反映不同工况时压气机各级叶尖的流动匹配情况;压气机第一级静子机匣壁面静压信号的相关积分值可以反映中低转速工况下放气带开关状态对转子端壁流态的影响。研究还表明,压气机静子机匣壁面沿程静压信号的相关积分分析是进行压气机气动稳定性监控诊断的一种有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号