首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Highly crystalline Pt nanoparticles with an average diameter of 5 nm were homogeneously modified on the surfaces of TiO(2) nanowires (Pt-TiO(2) NWs) by a simple hydrothermal and chemical reduction route. Photodegradation of methylene blue (MB) in the presence of Pt-TiO(2) NWs indicates that the photocatalytic activity of TiO(2) NWs can be greatly enhanced by Pt nanoparticle modification. The physical chemistry process and photocatalytic mechanism for Pt-TiO(2) NWs hybrids degrading MB were investigated and analyzed. The Pt attached on TiO(2) nanowires induces formation of a Schottky barrier between TiO(2) and Pt naonoparticles, leading to a fast transport of photogenerated electrons to Pt particles. Furthermore, Pt incoporation on TiO(2) surface can accelerate the transfer of electrons to dissolved oxygen molecules. Besides enhancing the electron-hole separation and charge transfer to dissolved oxygen, Pt may also serve as an effective catalyst in the oxidation of MB. However, a high Pt loading value does not mean a high photocatalytic activity. Higher content loaded Pt nanoparticles can absorb more incident photons which do not contribute to the photocatalytic efficiency. The highest photocatalytic activity for the Pt-TiO(2) nanohybrids on MB can be obtained at 1 at % Pt loading.  相似文献   

2.
TiO(2) nanoparticles compounded with different amounts of bismuth were prepared by a sol-gel method, and the effects of compounding bismuth on the phase transformation, photoinduced charge separation and photocatalytic activity for degrading rhodamine B solution were mainly investigated, along with enhancement mechanism of photocatalytic activity of TiO(2) nanoparticles by compounding bismuth species. It can be confirmed that, by means of X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), compounding bismuth can extend the optical response, and effectively inhibit the phase transformation process from anatase to rutile, consequently greatly improving the anatase crystallinity so as to promote the photoinduced charge separation. These factors are responsible for the increase in the photocatalytic activity of TiO(2) compounded with an appropriate amount of bismuth species.  相似文献   

3.
Wu Z  Sheng Z  Liu Y  Wang H  Mo J 《Journal of hazardous materials》2011,185(2-3):1053-1058
This study has been undertaken to investigate the roles of PtO and PtO(2) deposits in photocatalytic oxidation of NO over Pt-modified TiO(2) catalysts. These photocatalysts were prepared by neutralization method and characterized by XRD, BET, XPS, TEM and FTIR. It was found that Pt dopant existed as PtO and PtO(2) particles in as-prepared photocatalysts. And these Pt dopants would change their oxidation states during the photocatalytic oxidation reaction. An in situ XPS study indicated that a portion of PtO(2) on the surface of Pt/TiO(2) was reduced to PtO under UV irradiation. The migration of electrons to PtO(2) particles could separate the electrons and holes, resulting in the improvement of photocatalytic activity. And the depletion of PtO(2) by electrons could lead to the deactivation of Pt/TiO(2) catalyst. Moreover, PtO particles could be corroded to form Pt(2+) ions by HNO(3), which was one of the products of photocatalytic oxidation of NO. NO would adsorb on Pt(2+) related sites to form Pt(n+)-NO nitrosyls, retarding photocatalytic oxidation of NO to NO(2).  相似文献   

4.
Developing anatase/rutile phase-junction in TiO2 to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/TiO2 nanocomposites are developed as photocathodes for hydrogen production.The optimized Ag/TiO2 nanocomposite achieves a high current density of 1.28 mA cm-2,an incident photon-to-current con-version efficiency(IPCE)of 10.8%,an applied bias photon-to-current efficiency(ABPE)of 0.32 at 390 nm and a charge carriers'lifetime up to 2000s.Such enhancement on photoelectrochemical activity can be attributed to:(i)the generated Z-scheme system in the anatase/rutile phase-junction Ag/TiO2 photocath-ode enhances the separation,diffusion and transformation of electron/hole pairs inside the structure,(ii)Ag nanodots modification in the anatase/rutile phases leading to the tuned band gap with enhanced light absorption and(iii)the formed Schottky barrier after Ag nanodots surface modification provides enough electron traps to avoid the recombination of photogenerated electrons and holes.Our results here sug-gest that developing phase-junction nanocomposite as photocathode will provide a new vision for their enhanced photoelectrochemical generation of hydrogen.  相似文献   

5.
In this study we report the synthesis of a series of composite nanostructures comprising LDH and TiO2 phases. The materials characterization showed that the LDH crystallites are encapsulated inside the TiO2 matrix after the anatase seeds are deposited on MgxAl-LDHs. The structure in which LDH phase is embedded into anatase matrix is unique bringing important advantages to the photocatalytic performances of the nanocomposites. The photocatalytic activity of the prepared nanocomposites was tested on the degradation of the methylene blue (MB) in aqueous solution. The photocatalytic activities of the nanocomposites were compared with commercial TiO2 nanoparticles Degussa P25. The nanocomposites exhibited superior photocatalytic activity in basic environment because the negatively charged surface of TiO2 nanoparticles at high pH attracts the positively charged methylene blue species.  相似文献   

6.
通过将TiO2粉末和聚乙二醇混合,随后在氮气气氛下热处理合成了炭包覆TiO2.利用粉末X射线衍射、紫外-可见漫反射光谱、透射电子显微镜和氮吸附对炭包覆TiO2复合物样品进行了表征,并研究了其对浓度为~1.2×10-5苯的光催化活性.结果表明:炭包覆量受热处理温度和聚乙二醇用量的影响,随着温度的升高和聚乙二醇量的减少而减少;TiO2的结晶度随着温度的升高而提高,但是炭包覆对TiO2晶体的生长有抑制作用.炭包覆锐钛矿样品比纯TiO2表现出对苯更高的光催化活性,这是由于炭吸附作用导致锐钛矿颗粒周围的苯浓度增加以及包覆炭可导致电荷的有效分离;另一个原因是锐钛矿相结晶度的提高.因此,要获得对苯具有高光催化活性的炭包覆TiO2需要综合考虑碳含量和锐钛矿晶体结构.
Abstract:
Carbon-coated TiO2 was synthesized by mixing TiO2 powders and polyethylene glycol,followed by heat treatment in nitrogen atmosphere. All samples were characterized by powder X-ray diffraction,UV diffuse reflectance spectroscopy,high-resolution transmission electron microscopy,and nitrogen adsorption. The photocatalytic activity of carbon-coated TiO2 for benzene degradation was investigated with a benzene concentration of ~ 1.2 × 10-5. Results showed that the residual carbon content was influenced greatly by heat treatment temperature (HTT)and the amount of PEG,which decreased and increased with increasing the temperature and the amount of PEG,respectively. The crystallinity of TiO2 was improved when the HTT increased. However,the carbon residue had an inhibition effect on the crystal growth of TiO2. The carbon-coated anatase samples were shown to exhibit higher photocatalytic activities than the pristine TiO2 because of the adsorption enrichment of benzene by carbon around the anatase particles and of the effective charge separation due to the electronic conduction of carbon. Another important factor affecting photocatalytic activity was the crystallinity of the anatase phase. High photocatalytic activity for benzene requires a balance between the carbon content and the anatase crystalline structure.  相似文献   

7.
Wang D  Liu L  Zhang F  Tao K  Pippel E  Domen K 《Nano letters》2011,11(9):3649-3655
We report a spontaneous phase transformation of titania nanotubes induced by water at room temperature, which enables the as-anodized amorphous nanotubes to be crystallized into anatase mesoporous nanowires without any other post-treatments. These mesoporous TiO(2) nanomaterials have a markedly improved surface area, about 5.5 times than that of the as-anodized TiO(2) nanotubes, resulting in a pronounced enhanced photocatalytic activity. The present approach not only allows a flexible control over the morphology of TiO(2) nanostructures but can fundamentally eliminate the need for high temperature operations for crystallizing amorphous TiO(2).  相似文献   

8.
Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment.  相似文献   

9.
掺铁二氧化钛纳米线的合成及其光催化性能   总被引:1,自引:0,他引:1  
首次以钛酸丁酯、异丙醇等有机物为原料,在10M NaOH溶液中水解后,于180℃水热24h,一步法合成二氧化钛纳米线(TNWs),并用扫描电子显微镜(SEM)和X射线衍射(XRD)等手段表征其形貌和结构。结果表明,所得TNWs焙烧到950℃时,仍为锐钛矿相,表明本制备方法迟滞了二氧化钛由锐钛矿相到金红石相的转变。此外,以甲基橙为目标降解物,在300 W汞灯照射下,研究了不同水热温度、保温时间及掺杂量对掺铁二氧化钛纳米线(Fe-TNWs)光催化性能的影响。结果表明,于750℃焙烧4h制备的掺铁摩尔百分数为0.5%的TNWs,具有最强的光催化降解性能,其降解速率和效率较未掺杂的样品都有了大幅度的提高。  相似文献   

10.
Two types of TiO2 hydrosols (TOSO and HTO) were prepared from titanium sulfate (TiOSO4) and metatitanic acid (H2TiO3) by a chemical precipitation-peptization method, respectively. The prepared hydrosols were characterized by means of X-ray diffraction, particle size distribution, scanning electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller and Barret-Joyner-Halender methods. The results showed that the TiO2 hydrosols with an anatase crystal structure had smaller particle sizes, higher surface areas, larger pore volume, and higher transparence than Degussa P-25 suspension. The photocatalytic activity of the TiO2 hydrosols was evaluated for formaldehyde degradation under UVA illumination in a gaseous phase. The results demonstrated that the photocatalytic activity with the catalyst loading of 2mgcm(-2) was ranked as an order of HTO>TOSO>P-25. The photocatalytic activity was further studied using the HTO catalyst under different experimental conditions. The results showed that catalyst loading, relative humidity, and initial concentration could influence the efficiency of HCHO photocatalytic degradation. It was found that a catalyst loading of more than 2mgcm(-2) and a relative humidity of 55% were two essential conditions for achieving the best performance under these experimental conditions. The repeated experiments indicated that the HTO catalyst was reasonably stable and could be repeatedly used for the HCHO oxidation under UVA irradiation. This investigation would be helpful to promote the application of TiO2 photocatalytic technique for indoor air purification.  相似文献   

11.
Rutile TiO2 nanowires anchored on silica were fabricated by annealing TiO2 nanoparticles dispersed on silicon or quartz substrate by means of a polystyrene nanosphere monolayer template at 1000 degrees C for 1 h without any catalyst. The diameter and length of the nanowires were 30-80 nm and 1-3 microm, respectively. The growth direction of the nanowires is [112]. The photocatalytic activities of TiO2 nanoparticles and anchored nanowires were evaluated. TiO2 nanowires had higher photocatalytic activity for rhodamine B than TiO2 nanoparticles.  相似文献   

12.
This study aimed to prepare and characterise titanium dioxide (TiO2) nanoparticles and titanate nanotubes produced from Ti-sat flocculated sludge with drinking water (DW) and seawater (SW). The Ti-salt flocculated sludge from DW and SW was incinerated at 600 degrees C to produce TiO2 nanoparticles. XRD results showed that the anatase TiO2 structure was predominant for TiO2 from DW (TiO2-DW) and TiO2 from SW (TiO2-SW), which were mainly doped with carbon atoms. Titanate nanotubes (tiNT) were obtained when TiO2-DW and TiO2-SW were hydrothermally treated with NaOH solution. Structure phase, shape, crystallisation and photocatalytic activity of tiNT were affected by the incineration temperature and the amount of sodium present in different tiNT. The tiNT doped with thiourea incinerated at 600 degrees C presented anatase phase, showing a high increase of the degree of crystallisation with nanotube-like structures. The photocatalytic activity of these photocatalysts was evaluated using photooxidation of gaseous acetaldehyde. Thiourea doped tiNT-DW and tiNT-SW showed similar photocatalytic activity compared to commercially available TiO2-P25 under UV light and indicated a photocatalytic activity under visible light.  相似文献   

13.
采用溶胶-凝胶法制备了稀土Yb掺杂纳米TiO2光催化剂(Yb-TiO2),采用XRD、UV-Vis、FT-IR等方法对其进行表征和分析,并以亚甲基蓝(MB)作为目标降解物,考察了热处理温度以及Yb掺杂量对样品性能的影响。实验结果表明,Yb掺杂样品均为金红石相和锐钛矿相的混晶相,Yb的掺入拓展了TiO2对可见光的吸收范围,有效地抑制了光生电子-空穴对的复合,提高了TiO2的光催化活性。当pH值=2.5、n(Yb)∶n(Ti)=0.005、热处理温度为650℃时,制备的样品其光催化活性明显优于Degussa P25。  相似文献   

14.
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.  相似文献   

15.
彭绍琴  王添辉  李越湘 《功能材料》2012,43(17):2356-2359
采用溶胶-凝胶法制备了系列Ru/TiO2和Ru/TiO2/SiO2可见光活性光催化剂。通过TEM、XPS、XRD、UV-Vis漫反射和电化学对样品进行了表征。发现Ru和Si的存在可以抑制TiO2的相转变和晶粒生长;Ru掺杂使TiO2和TiO2/SiO2对可见光的吸收增强,也提高了光生电子和空穴的分离,因而,提高了催化剂可见光分解水制氢活性。当Ru在TiO2和TiO2/SiO2中的掺杂量分别为0.014%和0.021%(质量分数)时,光催化剂的可见光活性最高,且Ru/TiO2/SiO2活性为Ru/TiO2的5倍。  相似文献   

16.
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.  相似文献   

17.
以Span-80为调控剂,钛酸四丁酯(TBOT)为钛源,采用低温水解-回流法制备了Fe-F共掺杂TiO_2介孔复合微球(Fe-F/TiO_2)。通过XRD、SEM、FTIR、TG-DTA、BJH和UV-vis DRS测试方法对样品进行了结构性能表征;以部分水解聚丙烯酰胺(HPAM)为目标降解物,研究了Fe-F/TiO_2复合催化剂的光催化性能。结果表明,制得的Fe-F/TiO_2是由直径为10~15nm的纳米粒子堆砌而成的锐钛矿型介孔微球,其中Fe3+可以有效促进锐钛矿而抑制金红石相的生成,使其具有较高的热稳定性;比表面积、孔容积及平均孔径分别是145.11 m2/g、0.26cm3/g和6.23nm。在光降解HPAM的过程中,Fe3+和F-的协同效应可以提升材料的光催化性能,使FeF/TiO_2具有最高的催化活性。在紫外光及可见光条件下,0.1g的Fe-F/TiO_2降解100mL浓度为500mg/L的HPAM溶液120min,其COD去除率分别为81%和74%。  相似文献   

18.
Nitrogen doped TiO(2) nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO(2) nanocrystals can be clearly attributed to the change of the additional electronic (N(-)) states above the valence band of TiO(2) modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO(2) nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO(2).  相似文献   

19.
Wang CC  Kei CC  Perng TP 《Nanotechnology》2011,22(36):365702
The formation of TiO(2) nanotubes was conducted by atomic layer deposition (ALD) with tris-(8-hydroxyquinoline) gallium (GaQ(3)) nanowires as a template at different substrate temperatures, 50, 100, and 200?°C. TiO(2) nanotubes were formed only at 50 and 100?°C. Although a higher growth rate at 50?°C was observed, nanotubes with better uniformity, conformality, and less residual chloride were obtained at 100?°C because of a different formation mechanism. A photocatalysis test of TiO(2) nanotubes prepared by different cycle numbers at 100?°C was conducted. It showed that TiO(2) nanotubes prepared by 400 cycles of ALD and treated at 700?°C for 1 h to form anatase phase had the best photocatalytic performance. Compared with P-25, the nanotubes showed higher photocatalytic degradation of rhodamine B and water splitting efficiency.  相似文献   

20.
The electron beam (EB) irradiation effects of TiO2 deposited on carbon nanofibers (CNFs) were studied aiming the improvement of the photocatalytic activity. The EB irradiation contributed to an increase in crystallinity of the anatase resulting an improvement of the photocatalytic activity through the oxidation (ionization) of the doped TiO2 and leading to uniform distribution TiO2 particles on the CNFs surface. The photoactivity of the catalyst was measured by the decoloration of the methylene blue (MB) with time under UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号