首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用静电纺丝法制备了左旋聚乳酸/多壁碳纳米管/羟基磷灰石(PLLA/MW NT s/HA)杂化纳米纤维无纺毡,分析了MW NT s的加入对杂化纤维形态结构的影响,以及不同工艺条件下纤维的直径分布,并研究了纤维无纺毡在磷酸盐缓冲溶液(pH 7.4,37℃)中的体外降解过程。结果表明:MW NT s的加入使PLLA/HA纤维直径略有减小;PLLA/MW NT s/HA杂化纤维体系降解液的pH值下降到一定程度后,在降解后期呈缓慢上升趋势;碱性MW NT s/HA的加入抑制了PLLA降解过程中的自催化作用,减缓了PLLA的降解速度。  相似文献   

2.
The endothelialization of tissue-engineered vascular grafts (TEVGs) is considered to be an effective strategy to prevent the coagulation and restenosis of small-diameter vascular grafts. In this study, we fabricated well aligned nanofibrous scaffolds with PCL using a high speed rotating collector, modified those surfaces with hyaluronic acid (HA) and studied the synergistic effect of the scaffolds on the endothelial cells behavior in vitro. The well-aligned oriented architecture was observed by SEM images in the nanofibrous scaffolds. The contact angle measurements and FTIR-ATR evidenced that HA was successfully modified on the PCL nanofibrous scaffolds and hydrophilicity of the scaffolds was increased after HA coating. The results of adhesion and morphology of human umbilical vein endothelial cells (HUVECs) showed that the HA-coating aligned PCL (HA-aPCL) nanofibrous scaffolds could highly promote attachment and guide HUVECs bipolar spread with the parallel aligned nanofibers. Furthermore, HUVECs on the HA-aPCL formed a confluent monoendothelial cell layer and exhibited superior protein expression levels of von Willebrand factor (vWF). This study suggested that the combination of aligned nanostructure and HA modification was more capable of promoting the regeneration of functional endothelium for vascular tissue engineering than individual use.  相似文献   

3.
Chitosan (CS) nanofibers were prepared by an electrospinning technique and then treated with simulated body fluid (SBF) to encourage hydroxyapatite (HA) formation on their surface. The CS/HA nanofibers were subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy, and X-ray diffraction (XRD) to confirm HA formation as well as determine the morphology of the nanofibrous scaffolds. The SEM image indicated that the distribution of HA on the CS nanofibers was homogeneous. The results from EDS and XRD indicated that HA was formed on the nanofibrous surfaces after 6-day incubation in the SBF. The calcium/phosphorus ratio of deposited HA was close to that of natural bone. To determine biocompatibility, the CS/HA scaffolds were applied to the culture of rat osteosarcoma cell lines (UMR-106). The cell densities on the CS/HA nanofibers were higher than those on the CS nanofibers, the CS/HA film, and the CS film, indicating that cell proliferation on CS/HA nanofibers was enhanced. Moreover, the early osteogenic differentiation on CS/HA was also more significant, due to the differences in chemical composition and the surface area of CS/HA nanofibers. The biocompatibility and the cell affinity were enhanced using the CS/HA nanofibers. This indicates that electrospun CS/HA scaffolds would be a potential material in bone tissue engineering.  相似文献   

4.
Regeneration of fractured or diseased bones is the challenge faced by current technologies in tissue engineering. The major solid components of human bone consist of collagen and hydroxyapatite. Collagen (Col) and hydroxyapatite (HA) have potential in mimicking natural extracellular matrix and replacing diseased skeletal bones. More attention has been focused on HA because of its crystallographic structure similar to inorganic compound found in natural bone and extensively investigated due to its excellent biocompatibility, bioactivity and osteoconductivity properties. In the present study, electrospun nanofibrous scaffolds are fabricated with collagen (80 mg/ml) and Col/HA (1:1). The diameter of the collagen nanofibers is around 265 ± 0.64 nm and Col/HA nanofibers are 293 ± 1.45 nm. The crystalline HA (29 ± 7.5 nm) loaded into the collagen nanofibers are embedded within nanofibrous matrix of the scaffolds. Osteoblasts cultured on both scaffolds and show insignificant level of proliferation but mineralization was significantly (p < 0.001) increased to 56% in Col/HA nanofibrous scaffolds compared to collagen. Energy dispersive X-ray analysis (EDX) spectroscopy results proved the presence of higher level of calcium and phosphorous in Col/HA nanocomposites than collagen nanofibrous scaffolds grown osteoblasts. The results of the present study suggested that the designed electrospun nanofibrous scaffold (Col/HA) have potential biomaterial for bone tissue engineering.  相似文献   

5.
A new stem cell-scaffold construct based on poly-l-lactide (PLLA) nanofibers grafted with collagen (PLLA-COL) and cord blood-derived unrestricted somatic stem cells (USSC) were proposed to hold promising characteristics for bone tissue engineering. Fabricated nanofibers were characterized using SEM, ATR-FTIR, tensile and contact angle measurements. The capacity of PLLA, plasma-treated PLLA (PLLA-pl) and PLLA-COL scaffolds to support proliferation and osteogenic differentiation of USSC was evaluated using MTT assay and common osteogenic markers such as alkaline phosphatase (ALP) activity, calcium mineral deposition and bone-related genes. All three scaffolds showed nanofibrous and porous structure with suitable physical characteristics. Higher proliferation and viability of USSC was observed on PLLA-COL nanofibers compared to control surfaces. In osteogenic medium, ALP activity and calcium deposition exhibited the highest values on PLLA-COL scaffolds on days 7 and 14. These markers were also greater on PLLA and PLLA-pl compared to TCPS. Higher levels of collagen I, osteonectin and bone morphogenetic protein-2 were detected on PLLA-COL compared to PLLA and PLLA-pl. Runx2 and osteocalcin were also expressed continuously on all scaffolds during induction. These observations suggested the enhanced proliferation and osteogenic differentiation of USSC on PLLA-COL nanofiber scaffolds and introduced a new combination of stem cell-scaffold constructs with desired characteristics for application in bone tissue engineering.  相似文献   

6.
三维钛网表面双生物陶瓷涂层的制备及其性能   总被引:1,自引:0,他引:1  
采用浸渍涂敷-烧结法首次在医用三维钛网表面制备出双生物陶瓷涂层,利用X射线衍射、场发射扫描电子显微镜对HA-BG/BG/Ti复合材料进行了微观表征,拉伸法测量了Ti基体与BG涂层的结合强度,模拟人体体液(SBF)评价复合材料的生物相容性.研究表明:该双生物陶瓷涂层的内层为生物玻璃(BG)涂层,外层为多孔结构的羟基磷灰石-生物玻璃(HA-BG)复合涂层.Ti基体被致密的BG涂层包覆,由于在BG/Ti界面发生化学反应,界面的结合强度提高,平均结合强度达27 MPa.生物相容性实验表明,HA-BG/BG/Ti复合材料表面会被一层整齐、致密的HA覆盖,具有良好的生物相容性.  相似文献   

7.
Tissue engineering scaffolds for skin tissue regeneration is an ever expounding area of research, as the products that meet the necessary requirements are far and elite. The nanofibrous poly-l-lactic acid/poly-(α,β)-dl-aspartic acid/Collagen (PLLA/PAA/Col I&III) scaffolds were fabricated by electrospinning and characterized by SEM, contact angle and FTIR analysis for skin tissue regeneration. The cell-scaffold interactions were analyzed by cell proliferation and their morphology observed in SEM. The results showed that the cell proliferation was significantly increased (p  0.05) in PLLA/PAA/Col I&III scaffolds compared to PLLA and PLLA/PAA nanofibrous scaffolds. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for dermal tissue regeneration. The differentiation of ADSCs was confirmed using collagen expression and their morphology by CMFDA dye extrusion technique. The current study focuses on the application of PLLA/PAA/Col I&III nanofibrous scaffolds for skin tissue engineering and their potential use as substrate for the culture and differentiation of ADSCs. The objective for inclusion of a novel cell binding moiety like PAA was to replace damaged extracellular matrix and to guide new cells directly into the wound bed with enhanced proliferation and overall organization. This combinatorial epitome of PLLA/PAA/Col I&III nanofibrous scaffold with stem cell therapy to induce the necessary paracrine signalling effect would favour faster regeneration of the damaged skin tissues.  相似文献   

8.
Electrospun composite nanofibers for tissue regeneration   总被引:1,自引:0,他引:1  
Nanotechnology assists in the development of biocomposite nanofibrous scaffolds that can react positively to changes in the immediate cellular environment and stimulate specific regenerative events at molecular level to generate healthy tissues. Recently, electrospinning has gained huge momentum with greater accessibility of fabrication of composite, controlled and oriented nanofibers with sufficient porosity required for effective tissue regeneration. Current developments include the fabrication of nanofibrous scaffolds which can provide chemical, mechanical and biological signals to respond to the environmental stimuli. These nanofibers are fabricated by simple coating, blending of polymers/bioactive molecules or by surface modification methods. For obtaining optimized surface functionality, with specially designed architectures for the nanofibers (multi-layered, core-shell, aligned), electrospinning process has been modified and simultaneous 'electrospin-electrospraying' process is one of the most lately introduced technique in this perspective. Properties such as porosity, biodegradation and mechanical properties of composite electrospun nanofibers along with their utilization for nerve, cardiac, bone, skin, vascular and cartilage tissue engineering are discussed in this review. In order to locally deliver electrical stimulus and provide a physical template for cell proliferations, and to gain an external control on the level and duration of stimulation, electrically conducting polymeric nanofibers are also fabricated by electrospinning. Electrospun polypyrrole (PPy) and polyaniline (PAN) based scaffolds are the most extensively studied composite substrates for nerve and cardiac tissue engineering with or without electrical stimulations, and are discussed here. However, the major focus of ongoing and future research in regenerative medicine is to effectively exploit the pluripotent potential of Mesenchymal Stem Cell (MSC) differentiation on composite nanofibrous scaffolds for repair of organs.  相似文献   

9.
Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-l-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration.  相似文献   

10.
In this study, chitosan/hydroxyapatite (CS/HA) nanofibers were prepared using a wet chemical method. First, CS nanofibers with uniform diameters were fabricated using electrospinning. Then, a wet chemical process was used to mineralize nanofiber surfaces to form a homogeneous HA deposit. Reactions with three cycles were found to optimize biomimetic properties of the HA. The mineralization process required only approximately 3 h, which corresponded to a saving of 98 % in preparation time compared with that needed by the process using a simulated body fluid (SBF). According to the attachment and spreading of UMR (rat osteosarcoma) cells on the CS/HA composite fibers, the deposited mineralization layer significantly enhanced cell affinity of the CS nanofibers and the HA created by the wet chemical method was as effective as that created by the SBF. The composite nanofibrous scaffolds produced by the wet chemical process also promoted osteogenic differentiation by inducing ossification. Thus, expressions of collagen type I, alkaline phosphatase, osteocalcin, bone sialoprotein, and osterix were all enhanced. These results demonstrated that composite electrospun fibers can be efficiently prepared using wet chemical method and the resulting nanofibrous scaffolds have considerable potential in future bone tissue engineering applications.  相似文献   

11.
Controlling inflammation meanwhile facilitating tissue regeneration has been considered as a promis-ing strategy to treat inflammatory bone defect.Herein,we describe the synthesis of a bio-sensitive poly(lactic-co-glycolic acid)/mesoporous silica nanocarriers core-shell porous microsphere(PLGA/MSNs-PMS)encapsulated poly(L-lactic acid)(PLLA)spongy nanofibrous micro-scaffold as a new generation of therapeutic platform for effective reconstruction of bone defects caused by periodontal diseases.The PLGA/MSNs-PMS were designed as stimuli-responsive carriers for on-demand co-delivery of mul-tiple biomolecules to provide proper physiological environment,while the multi-level(from macro-,micro-to nanometers)nanofibrous and porous structures in PLLA micro-scaffold were in charge of the reconstruction of ECM,which synergistically contribute to the enhancement of new tissue formation under inflammatory condition.After local injection into periodontal tissue,this construct could sequen-tially release bone growth factor(BMP-2)as well as anti-inflammatory drug(celecoxib)loaded MSNs in response to the over-expressed matrix metalloproteinases(MMP)in periodontal region.During alveolar bone regeneration induced by BMP-2 and ECM like structure,the MSNs would further deliver celecoxib in target cells to achieve inflammation inhibition,resulting in effective treatment of periodontal disease.  相似文献   

12.
Electrospun Nanofiber sheets have been shown to mimic the structure of extracellular matrix (ECM). Although these nanofibers have shown great potential for use as tissue engineering scaffolds, it is difficult for the electrospun nanofiber based sheets to be shaped into the desired three-dimensional structure. In this study, poly(L-lactic acid) (PLLA), a biodegradable and biocompatible polyester, was electrospun to produce nanofibers that were treated with an amino group containing base in order to fabricate polymeric nanocylinders. The aspect ratio of the PLLA nanocylinders was tunable by varying the aminolysis time and density of the amino group containing base. The effects of changes in nanofibrous morphology of the PLLA nanocylinders/macro-porous gelatin scaffolds on cell adhesion and proliferation were evaluated. The results revealed different cell morphology, adhesion, and proliferation in the nanocylinders composite gelatin scaffold versus gelatin scaffold alone. Confocal laser scanning microscopy observation showed more spreading and a more flattened cell morphology after NIH3T3 cells were cultured on PLLA nanocylinders/gelatin scaffolds for 10 hours and 4 days. These results indicate that the gelatin/PLLA nanocylinder composite is a promising way to fabricate 3D nanofibrous scaffolds that accelerates cell adhesion and proliferation for tissue engineering.  相似文献   

13.
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40?% of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.  相似文献   

14.
Polycaprolactone (PCL), poly (lactic acid) (PLA) and hydroxyapatite (HA) are frequently used as materials for tissue engineering. In this study, PCL/PLA/HA nanofiber mats with different weight ratio were prepared using electrospinning. Their structure and morphology were studied by FTIR and FESEM. FTIR results demonstrated that the HA particles were successfully incorporated into the PCL/PLA nanofibers. The FESEM images showed that the surface of fibers became coarser with the introduction of HA nanoparticles into PCL/PLA system. Furthermore, the addition of HA led to the decreasing of fiber diameter. The average diameters of PCL/PLA/HA nanofiber were in the range of 300-600 nm, while that of PCL/PLA was 776 +/- 15.4 nm. The effect of nanofiber composition on the osteoblast-like MC3T3-E1 cell adhesion and proliferation were investigated as the preliminary biological evaluation of the scaffold. The MC3T3-E1 cell could be attached actively on all the scaffolds. The MTT assay revealed that PCL/PLA/HA scaffold shows significantly higher cell proliferation than PCL/PLA scaffolds. After 15 days of culture, mineral particles on the surface of the cells was appeared on PCL/PLA/HA nanofibers while normal cell spreading morphology on PCL/PLA nanofibers. These results manifested that electrospun PCL/PLA/HA scaffolds could enhance bone regeneration, showing their marvelous prospect as scaffolds for bone tissue engineering.  相似文献   

15.
Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(d,l-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity.  相似文献   

16.
Composite porous scaffolds of hydroxyapatite (HA)/poly-l-lactide (PLLA) were fabricated by a two-step immersing replication method. Structure and mechanical properties of both the single HA scaffold and the composite HA/PLLA scaffold were determined. The bioactivity of the scaffolds was evaluated by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive Spectrometer (EDS). The results showed that without changing the highly interconnected porous structure, the HA/PLLA composite scaffold was mechanically enhanced to a great deal of extent compared with single HA scaffold. On the other hand, it is also suggested that the HA/PLLA scaffold was bioactive as it induced the formation of apatite on the surface of the composite scaffolds after soaking in SBF for 7 days.  相似文献   

17.
Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along with increase of the HAp concentration. In vitro mineralization in a 5 × simulated body fluid (SBF) revealed that the PLGA/HAp nanofibrous scaffolds had a stronger biomineralization ability than the control PLGA scaffolds. Biological performance of the nanofibrous scaffolds of the control PLGA and PLGA with 5 wt% HAp (PLGA/5HAp) was assessed by in vitro culture of neonatal mouse calvaria-derived MC3T3-E1 osteoblasts. Both types of the scaffolds could support cell proliferation and showed sharp increase of viability until 7 days, but the cells cultured on the PLGA/5HAp nanofibers showed a more spreading morphology. Despite the similar level of the cell viability and cell number at each time interval, the alkaline phosphatase secretion was significantly enhanced on the PLGA/5HAp scaffolds, indicating the higher bioactivity of the as-prepared nano-HAp and the success of the present method for preparing biomimetic scaffold for bone regeneration.  相似文献   

18.
Magnetic poly(l-lactide) (PLLA)/Fe3O4 composite nanofibers were prepared with the purpose to develop a substrate for bone regeneration. To increase the dispersibility of Fe3O4 nanoparticles (NPs) in the PLLA matrix, a modified chemical co-precipitation method was applied to synthesize Fe3O4 NPs in the presence of PLLA. Trifluoroethanol (TFE) was used as the co-solvent for all the reagents, including Fe(II) and Fe(III) salts, sodium hydroxide, and PLLA. The co-precipitated Fe3O4 NPs were surface-coated with PLLA and demonstrated good dispersibility in a PLLA/TFE solution. The composite nanofiber electrospun from the solution displayed a homogeneous distribution of Fe3O4 NPs along the fibers using various contents of Fe3O4 NPs. X-ray diffractometer (XRD) and vibration sample magnetization (VSM) analysis confirmed that the co-precipitation process had minor adverse effects on the crystal structure and saturation magnetization (Ms) of Fe3O4 NPs. The resulting PLLA/Fe3O4 composite nanofibers showed paramagnetic properties with Ms directly related to the Fe3O4 NP concentration. The cytotoxicity of the magnetic composite nanofibers was determined using in vitro culture of osteoblasts (MC3T3-E1) in extracts and co-culture on nanofibrous matrixes. The PLLA/Fe3O4 composite nanofibers did not show significant cytotoxicity in comparison with pure PLLA nanofibers. On the contrary, they demonstrated enhanced effects on cell attachment and proliferation with Fe3O4 NP incorporation. The results suggested that this modified chemical co-precipitation method might be a universal way to produce magnetic biodegradable polyester substrates containing well-dispersed Fe3O4 NPs. This new strategy opens an opportunity to fabricate various kinds of magnetic polymeric substrates for bone tissue regeneration.  相似文献   

19.
Song W  Markel DC  Wang S  Shi T  Mao G  Ren W 《Nanotechnology》2012,23(11):115101
The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.  相似文献   

20.
In order to provide a biomimetic natural extracellular matrix microenvironment with excellent mechanical capacity for tissue regeneration, a novel porous hybrid glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate (SFMA/P(LLA-CL)–PEGDA) hybrid three-dimensional (3D) nanofibrous scaffolds was successfully fabricated through the combination of 3D nanofibrous platforms and divinyl PEGDA based photocrosslinking, and then further improved water resistance by ethanol vapor post-treatment. Scanning electron microscopy and micro-computed tomography results demonstrated significant PEGDA hydrogel-like matrices bonded nanofibers, which formed a 3D structure similar to that of “steel bar (nanofibers)‒cement (PEGDA)”, with proper pore size, high porosity, and high pore connectivity density. Meanwhile, the hybrid 3D nanofibrous scaffolds showed outstanding swelling properties as well as improved compressive and tensile properties. Furthermore, these hybrid 3D nanofibrous scaffolds could provide a biocompatible microenvironment, capable of inducing the material‒cell hybrid and regulating human umbilical vein endothelial cells proliferation. They thus present significant potential in tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号