首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of poly (N-isopropylacrylamide) (pNIPAm), and pNIPAm-co-acrylic acid (pNIPAm-co-AAc) microgels to remove an organic azo dye molecule, 4-(2-Hydroxy-1-naphthylazo) benzenesulfonic acid sodium salt (Orange II) from aqueous solutions at both room and elevated temperature was assessed. At room temperature, we found that the amount of Orange II removed from water (removal efficiency) increased with increasing AAc and microgel concentration. The removal of Orange II from water was also fit by a Langmuir sorption isotherm model. Furthermore, we found the extent of Orange II removal depended on solution temperature; more Orange II was removed from water at elevated temperature and as the microgels were held at that temperature for longer durations of time. Additionally, by increasing the cycles between high and ambient temperature, the removal of Orange II was enhanced, although this was only true for two temperature cycles. We hypothesize that this is a result of the thermoresponsive nature of pNIPAm-based microgels which deswell at elevated temperature expelling their solvating water and when the microgels are cooled back down they reswell with the Orange II containing water. We also hypothesize that the microgels become saturated after the second heating cycle and so the efficiency of removal did not increase further. Finally, we assessed the ability of the microgels to retain the Orange II after it is removed from the aqueous solution. We determined that the microgels "leak" 25.6% of the Orange II that was originally removed from the water.  相似文献   

2.
Thermoresponsive poly(N-isopropyl acrylamide) (pNIPAm) microgels possessing a hollow structure have been synthesized from core-shell nanoparticles upon oxidation of the particle core, followed by removal of the produced polymer segments by centrifugation. N,N'-(1,2-dihydroxyethylene)bisacrylamide (DHEA) is used as a cross-linker for preparing the degradable core, whereas N,N'-methylenebis(acrylamide) (BIS) is used as a cross-linker to add a nondegradable pNIPAm shell. Addition of NaIO(4) to a suspension of these particles in water leads to controlled degradation of the particle core by cleavage of the 1,2-glycol bond in DHEA. Fluorescence spectroscopy, UV/Vis spectroscopy, and photon correlation spectroscopy are used to characterize the hollow particles produced.  相似文献   

3.
Xu J  Zeng F  Wu S  Liu X  Hou C  Tong Z 《Nanotechnology》2007,18(26):265704
Submicron-sized poly(N-isopropyl acrylamide)/polyethyleneimine core-shell microgels were prepared in aqueous media by using tert-butyl hydroperoxide (TBHP) as an initiator, and then the gold nanoparticles (~8?nm) were formed on the surface of the microgels. The amino groups on the polyethyleneimine (PEI) chains act as the binder for the assembly of the gold nanoparticles/microgel complex. In aqueous media the microgels are highly stable with the gold nanoparticles on their extended PEI chains, and this multi-scale nanoparticle complex can be recovered from water and redispersed in water. The nanogold/microgel particles were conjugated with the enzymes horseradish peroxidase (HRP) and urease. It is found that under identical assay conditions the enzyme/nanogold/microgel systems exhibit enhanced biocatalytic activity over free enzymes in solution, especially at lower enzyme concentrations. In addition, compared to free HRP, the HRP/nanogold/microgel systems show higher activity at varied pHs and temperatures, as well as higher storage stability. Thus the novel nanogold/microgel particles can serve as an excellent support for enzymes.  相似文献   

4.
A novel type of submicrometer-sized hybrid microgels containing gold nano-particles (AuNPs) has been tested as catalyst in reduction of 4-nitrophenol in aqueous medium. The influence of microgel concentration, gold content, as well as temperature of reaction medium on kinetics of 4-nitrophenol reduction process has been investigated. The pseudo-first-order kinetics was used to evaluate the catalytic reaction rate. It has been demonstrated that reaction rate of 4-nitrophenol reduction can be accelerated if the concentration of microgel in the reaction system or amount of gold nanoparticles loaded into microgels increases. Increase of reaction temperature resulted in rapid increase of reduction rate. Compared to pure gold nano-particles hybrid microgels at similar conditions reduce the activation energy of reduction process by a factor of 2. This indicates that localization of AuNPs within microgel template prevents their aggregation and therefore high catalytic activity can be preserved independently from reaction conditions. Additionally, polymeric template provides suitable environment for better mass transfer in present system that improves the catalyst efficiency.  相似文献   

5.
This study highlights the advantages of functionalized poly(N-isopropylacrylamide) (PNIPAAm) microgels over pure PNIPAAm microgels in terms of polymer network properties and drug release profiles. PNIPAAm network was modified by addition of maleic anhydride (MA) as a comonomer and by formation of interpenetrating polymer network in the presence of alginate. The functionalized thermosensitive microgels in the size range from 20 to 80 μm and with better performance in comparison with pure PNIPAAm microgels were prepared by inverse suspension polymerization. The impact of MA and alginate on the PNIPAAm microgel structure was evaluated through analysis of microgel size, size distribution, volume phase transition temperature (VPTT), equilibrium swelling ratio as well as morphology of the system. It was shown that the controlled modification of PNIPAAm network could result in microgels of considerably improved swelling capacity with unchanged thermosensitivity and maintained open pore morphology. In addition, drug release behavior of microgels could be markedly altered. Release of procaine hydrochloride from the selected microgels was studied using Franz diffusion cell at temperatures below and above VPTT of the microgels. Temperature-controlled drug release pattern was dependent on the type of functionalization of PNIPAAm network. According to drug loading properties and drug release mechanism, PNIPAAm/MA copolymer microgels demonstrated the optimal performances.  相似文献   

6.
Microgels are soft microparticles that often exhibit thermoresponsiveness and feature a transformation at a critical temperature, referred to as the volume phase transition temperature. Whether this transformation occurs as a smooth or as a discontinuous one is still a matter of debate. This question can be addressed by studying individual microgels trapped in optical tweezers. For this aim, composite particles are obtained by decorating  Poly-N-isopropylacrylamide (pNIPAM) microgels with iron oxide nanocubes. These composites become self-heating when illuminated by the infrared trapping laser, performing hot Brownian motion within the trap. Above a certain laser power, a single decorated microgel features a volume phase transition that is discontinuous, while the usual continuous sigmoidal-like dependence is recovered after averaging over different microgels. The collective sigmoidal behavior enables the application of a power-to-temperature calibration and provides the effective drag coefficient of the self-heating microgels, thus establishing these composite particles as potential micro-thermometers and micro-heaters. Moreover, the self-heating microgels also exhibit an unexpected and intriguing bistability behavior above the critical temperature, probably due to partial collapses of the microgel. These results set the stage for further studies and the development of applications based on the hot Brownian motion of soft particles.  相似文献   

7.
We demonstrate a simple route for the preparation of novel hybrid particles with multiple sensitivities. Aqueous polymeric microgels are modified by magnetite nanoparticles in the preparation of temperature- and pH-sensitive hybrids with a high magnetic response. Up to 15 wt % of magnetite nanoparticles are loaded into microgels. The influence of the amount of magnetite in the microgel structure on the morphology and colloidal properties is discussed. The presence of the magnetite nanoparticles in the microgel decreases its degree of swelling and shifts the volume phase-transition temperature to higher values. Nanostructured composite films with controlled morphologies can be prepared by water evaporation and deposition of the hybrid microgels on a solid substrate.  相似文献   

8.
This work was conducted to study the ability of permanganate (KMnO(4)) oxidative treatment as a method to decolourise the solutions containing azo dye C.I. Acid Orange 7, C.I. Acid Orange 8, C.I. Acid Red 14, or C.I. Acid Red 73, in a batch system. The results of the study demonstrated the complete removal of the colour and partial mineralization for each dye solution. The effect of the key operating variables such as initial dye concentration, permanganate amount, pH and temperature were studied. Decolourisation reactions were influenced by the acidity and temperature of the treated solutions. To avoid the overdose of KMnO(4), the stoichiometric amount of permanganate required for 1 mol of dye complete colour removal was determined. The reactions between permanganate and C.I. Acid Orange 7, C.I. Acid Orange 8, C.I. Acid Red 14 and C.I. Acid Red 73 dyes in acidic medium exhibit (2.05, 2.20, 2.42 and 2.79):1 stoichiometry (MnO(4)(-):dye). Dye degradation efficiency by potassium permanganate was studied, monitoring total organic carbon (TOC). The results indicated that the degradation efficiency of azo dyes increased with the increase of the potassium permanganate amount. Meanwhile, even in large excess of the oxidant, the dye mineralization was incomplete.  相似文献   

9.
In the present paper a method for the targeted deposition of different nanomaterials on aqueous microgels is described. In the first stage poly(3,4-ethylenedioxythiophene) (PEDOT) nanorods are introduced into the microgel structure by in situ oxidative polymerization. In the second stage hydrogen tetrachloroaurate is used to transform PEDOT chains to an oxidized state in the microgel structure, leading to the fixation of chloroaurate anions on the surface of the PEDOT nanorods. The reduction of chloroaurate ions induces the formation of gold nanoparticles (AuNPs) predominantly located on the PEDOT surface. Obtained microgel/PEDOT/AuNP hybrid particles with different nanoparticle loadings exhibit superior colloidal stability and temperature sensitivity. The microgel/PEDOT/AuNP hybrid microgels exhibit extraordinary catalytic activity in aqueous media.  相似文献   

10.
Submicrometer-sized particles of poly(N-isopropylacrylamide) (PNIPAM) are synthesized by surfactant-free radical polymerization. The morphology and nanomechanical properties of individual, isolated PNIPAM microgel particles at the silicon/air and silicon/water interfaces, below and above the PNIPAM volume-phase-transition temperature (VPTT), are probed by atomic force microscopy. In air, and in water below the VPTT, the PNIPAM spheres are flattened and adopt a pancakelike shape. Interestingly, above the VPTT the microgels adopt a more spherical form with increased height and decreased width, which is attributed to reduced interactions of the particles with the substrate. The elastic modulus calculated from force-indentation curves obtained for individual microgel spheres reveals that the stiffness of the particle's surface decreases by two orders of magnitude upon swelling in water. Additionally, the modulus of the PNIPAM spheres in water increases by one order of magnitude when crossing the VPTT from the swollen to the collapsed states, indicating a more compact chain packing at the particle surface.  相似文献   

11.
Surface‐enhanced Raman scattering (SERS) is one of the most promising methods to detect small molecules for point‐of‐care analysis as it is rapid, nondestructive, label‐free, and applicable for aqueous samples. Here, microgels containing highly concentrated yet evenly dispersed gold nanoparticles are designed to provide SERS substrates that simultaneously achieve contamination‐free metal surfaces and high signal enhancement and reproducibility. With capillary microfluidic devices, water‐in‐oil‐in‐water (W/O/W) double‐emulsion drops are prepared to contain gold nanoparticles and hydrogel precursors in innermost drop. Under hypertonic condition, water is selectively pumped out from the innermost drops. Therefore, gold nanoparticles are gently concentrated without forming aggregates, which are then captured by hydrogel matrix. The resulting microgels have a concentration of gold nanoparticles ≈30 times higher and show Raman intensity two orders of magnitude higher than those with no enrichment. In addition, even distribution of gold nanoparticles results in uniform Raman intensity, providing high signal reproducibility. Moreover, as the matrix of the microgel serves as a molecular filter, large adhesive proteins are rejected, which enables the direct detection of small molecules dissolved in the protein solution. It is believed that this advanced SERS platform is useful for in situ detection of toxic molecules in complex mixtures such as biological fluids, foods, and cosmetics.  相似文献   

12.
Robust, uniform, monolithic microgel thin films can be created by actively spreading a concentrated solution of microgels onto a Au surface at 30 °C. The method is easy, fast, and seemingly universal: it can be used to coat a variety of Au coated surfaces with microgels containing different chemical functionalities. No control of the deposition conditions, other than temperature and microgel concentration, is required. We show that this technique consistently produces monolithic microgel films on Au-coated surfaces, and it has been extended to coat Si substrates. After deposition of a thin Au overlayer onto the deposited microgel layer, the materials are colored, as evidenced by multiple peaks in their reflectance spectra. The assemblies deposited using the described "paint-on" technique show increased spectral and visual purity over the entire surface area as compared to colored materials made by a previously used passive drying process.  相似文献   

13.
王磊  易凯  杨阳  王彩霞  吴敏  鲁鹏 《包装工程》2021,42(9):86-93
目的研究氧化纳米纤维素/乳酸链球菌素(TONCC/nisin)凝胶粒子的性质及其在环保抗菌泡沫中的应用。方法利用TONCC的表面羧基基团与nisin的表面阳离子的吸附耦合作用,制备TONCC/nisin水凝胶和微凝胶,以微凝胶作为稳定粒子,环氧大豆油丙烯酸酯(AESO)为油相,制备TONCC/nisin/AESO Pickering乳液,对水凝胶、微凝胶、乳液的稳定性进行研究;通过热固化乳液得到环保抗菌的泡沫材料,并对泡沫材料的结构和抗菌效果进行表征。结果水凝胶的结构随着在水中浸泡时长的增加而发生变化,宏观表现为坍塌变形,nisin逐渐析出,微凝胶随着静置时间的延长其粒径变化不大;以微凝胶作为界面稳定剂的AESO乳液的热稳定性较好,在90℃下加热30 min乳液液滴并未发生聚并现象,该乳液固化后形成的多孔泡沫材料对李斯特菌的抑制作用明显,当泡沫中nisin含量为2μg/g时,其抑菌率为43%。结论TONCC和nisin形成的微凝胶粒子在水中稳定性较好,可以用于乳化AESO制备Pickering泡沫,同时赋予泡沫多孔性和抗菌性,在制备环保抗菌泡沫方面有很大的应用潜力。  相似文献   

14.
Surface‐enhanced Raman scattering (SERS) is a promising technique for molecular analysis as the molecular fingerprints (Raman spectra) are amplified to detectable levels compared with common spectroscopy. Metal nanostructures localize electromagnetic field on their surfaces, which can lead to dramatic increase of Raman intensity of molecules adsorbed. However, the metal surfaces are prone to contamination, thereby requiring pretreatment of samples to remove adhesive molecules. To avoid the pretreatment and potentially achieve point‐of‐care (POC) analysis, we have developed SERS‐active microgels using the droplet‐microfluidic system. As the microgels are composed of water‐swollen network with consistent mesh size, they selectively allow diffusion of molecules smaller than the mesh, thereby excluding large adhesives. To render the microgels highly SERS‐active, we destabilize silver nanocubes to form agglomerates, which are embedded in the matrix of microgels. The nanogaps in the agglomerates provide high sensitivity in Raman measurement and size‐selective permeability of the microgel matrix obviates the pretreatment of samples. To validate the functions, we demonstrate the direct detection of Aspirin dissolved in whole blood without any pretreatment.  相似文献   

15.
The decolorization of an azo dye, C.I. Reactive Red 2 was investigated using TiO(2) photocatalysis coupled with water jet cavitation. Experiments were performed in a 4.0 L solution under ultraviolet power of 9 W. The effects of TiO(2) loading, initial dye concentration, solution pH, geometry of cavitation tube, and the addition of anions on the degradation of the dye were evaluated. Degradation of the dye followed a pseudo-first order reaction. The photocatalysis coupled with water jet cavitation elevated degradation of the dye by about 136%, showing a synergistic effect compared to the individual photocatalysis and water jet cavitation. The enhancement of photocatalysis by water jet cavitation could be due to the deagglomeration of catalyst particles as well as the better contact between the catalyst surfaces and the reactants. Venturi tube with smaller diameter and shorter length of throat tube favored the dye decolorization. The degradation efficiency was found to increase with decreasing initial concentration and pH. The presence of NO(3)(-) and SO(4)(2-) enhanced the degradation of RR2, while Cl(-), and especially HCO(3)(-) significantly reduced dye decolorization. The results of this study indicated that the coupled photocatalysis and water jet cavitation is effective in degrading dye in wastewater and provides a promising alternative for treatment of dye wastewater at a large scale.  相似文献   

16.
采用超临界二氧化碳(scCO2)沉淀聚合法,在不添加高分子表面活性剂及共溶剂的前提下,以AIBN为引发剂,二乙二醇二甲基丙烯酸酯为交联剂,成功制备了交联的聚(N-异丙基丙烯酰胺)温度敏感型微凝胶;通过扫描电镜(SEM)、差示扫描量热分析(DSC)等方法对聚合物的微观形貌进行了表征,测定了微凝胶的相转变温度,同时也考察了...  相似文献   

17.
This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k(D) was correlated with temperature by a modified Arrhenius Equation with an activation energy E(a) of 15.538 kJ mol(-1).  相似文献   

18.
Photocatalytic decolorization of azo-dye Orange II in water has been examined in an external UV light irradiation slurry photoreactor using zinc oxide (ZnO) as a semiconductor photocatalyst. The effects of process parameters such as light intensity, initial dye concentration, photocatalyst loading and initial solution pH on the decolorization rate of Orange II have been systematically investigated. A two-stage photocatalytic decolorization of Orange II, the first stage of fast decolorization rate and the subsequent second stage of rather slow decolorization rate, was found. The efficiency of decolorization of Orange II increased as initial Orange II concentration decreased and UV light intensity increased. There was the optimal ZnO concentration being around 1000 mg L(-1). The optimal pH was around 7.7, which was at the natural pH of the dye solution. The effect of aeration rate on the decolorization of Orange II has been also investigated and the enhancement of decolorization of Orange II with increasing aeration rate was found. By using a model for the light intensity profile in the external UV light irradiation slurry photoreactor, the simulation model for the decolorization of Orange II with ZnO photocatalyst has been developed. The proposed model in which the slow decolorization in the second stage as well as the initial fast decolorization is also taken into account could simulate the experimental results for UV light irradiation satisfactorily. The proposed simulation model in which the change of light intensity with time due to the decolorization of Orange II and the light scatter due to solid photocatalysts are considered will be very useful for practical engineering design of the slurry photoreactor of wastewater including textile dyes.  相似文献   

19.
Semi-IPN hydrogel composites for dye adsorption studies were prepared via photopolymerization of poly(ethylene glycol) (PEG) macromer and acrylamide (AAm) monomer in the presence of chitosan (CS). Swelling properties and kinetics of the hydrogel composites were investigated in aqueous solution and Acid Red 18 (AR 18) solution. The adsorption studies showed that the adsorption capacity for AR 18 increased with the increase of initial dye concentration and chitosan content in the hydrogels, but decreased with the increase of pH and ionic strength of dye solutions. Absorption kinetics of AR 18 followed pseudo second-order kinetic model at pH 2.0. The adsorption capacities for Acid Orange 7 (AO 7), Methyl Orange (MO) and Basic Violet 14 (BV 14) were also examined at pH 2.0, and the equilibrium adsorption data of AR 18, AO 7 and MO well fitted the Langmuir isotherm. The hydrogel composites could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

20.
以偶氮二异丁腈(AIBN)为引发剂,N,N’-亚甲基双丙烯酰胺(Bis—A)为交联剂,聚乙烯吡咯烷酮(PVPK-30)为稳定剂,在乙醇/水的混合介质中使亲水性丙烯酰胺(AM)与疏水性丙烯腈(AN)进行分散共聚,制得一系列P(AM—AN)微凝胶,通过扫描电子显微镜(SEM)和差示扫描量热仪(DSC)考察了共聚单体AN的用量对微凝胶形态及其热稳定性的影响,结果表明,随着反应体系中AN用量的增大,所得微凝胶的玻璃化转变温度提高,有利于其在较高温度下使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号