首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a new type of thin, compact, and light weighed diaphragm micro-pump has been successfully developed to actuate liquid by the vibration of a diaphragm. The micro-diaphragm pump with two valves is fabricated in an aluminum case by using highly accurate CNC machine, and the cross-section dimension is 28 mm × 5 mm. Both valves and diaphragm are manufactured from PDMS. The amplitude of vibration by a piezoelectric device produces an oscillating flow and alters the chamber volume by the curvature change of a diaphragm. Several experimental set-ups for performance tests in a single micro-diaphragm pump, isothermal flow open system, and a closed liquid cooling system are designed and implemented. The performance of a one-side actuating micro-diaphragm pump is affected by the design of check valves, diaphragm, piezoelectric device, chamber volume, input voltage and frequency. The measured maximum flow rate of present design is 72 ml/min at zero total pump head in the range of operation frequency 70–180 Hz.  相似文献   

2.
Mixing of biological species in microfluidic channels is challenging since the mixing process is limited by the small mass diffusion coefficient of the species and by the dominance of viscous effects, captured by the low value of Reynolds number characteristic of laminar liquid flow in microchannels. This paper investigates the use of pulsating flows to enhance mixing in microflows. The dependence of the degree of mixing on various dimensionless groups is investigated. These dimensionless numbers are Strouhal number, pulse amplitude divided by base velocity, Reynolds number, location along the mixing channel normalized by the channel width, channel cross section aspect ratio, and phase difference between the inlet streams. The degree of mixing, observed to experience both spatial fluctuations down the mixing channel and temporal fluctuations over a pulsation cycle at the quasi-stationary state, is shown to be most sensitive to changes in pulsation amplitude and frequency. For a fixed pulsation amplitude and Reynolds number, the degree of mixing has a peak value for a certain Strouhal number above and below which the degree of mixing decreases. Increasing the pulsation amplitude improves mixing with the behavior becoming asymptotic at large pulsation amplitudes. The temporal fluctuations in the degree of mixing over a cycle at the quasi-stationary state decrease and the average degree of mixing increases downstream the mixing channel. The fluctuations are also smaller at higher values of the Strouhal number and are generally larger for larger pulsation amplitudes. This study also takes into account the rate of work input required to overcome viscous effects. While this power input is independent of the pulsation frequency, it exhibits a parabolic dependence on the pulsation amplitude. Finally, considering the dependence of the degree of mixing (mean and standard deviation), mixing length, and energy consumption on these dimensionless groups, examples of the trade-off that has to be made in choosing the operating conditions based on different constraints are presented.  相似文献   

3.
在许多新型传感器和微系统中均存在微量流体自动、精确地驱动和控制问题,而这有赖于微小尺度下对流量的精确测量。基于射流振荡原理设计了一种新型的无反馈通道微小尺度流量传感器,采用计算流体动力学(CFD)方法对该流量传感器的测量特性进行了仿真研究。通过观测振荡腔内部流场,分析了振荡器内部流动形态和射流振荡过程。通过对监测点压力变化曲线的分析,获得了不同入口速度下流体振荡频率,建立了流体流速与振荡频率的函数关系。研究结果表明,该微小尺度射流振荡器振荡平稳,主射流切换灵活,在较宽的流速范围内,流速与振荡频率具有线性关系,具有0.3%的较低的相对压力损失并可达到较小的测量下限,易于加工成型。  相似文献   

4.
郑丹丹  张涛 《传感技术学报》2007,20(5):1103-1108
针对涡街流量传感器在小口径、低流速下信号微弱,易被强噪声淹没而难于提取的特点,提出了利用Duffing振子检测微弱信号的方法.通过仿真对涡街信号中含有白噪声以及谐波干扰的情况进行分析,仿真和实验均表明:这种基于混沌理论的微弱信号检测方法对涡街信号中较强的白噪声以及频差较大的谐波干扰具有很好的免疫力,并且通过计算最大Lyapunov指数的波动频率能够准确估计出涡街有用信号频率,实现低流速下涡街微弱信号检测.  相似文献   

5.
This paper presents the world's first surface-micromachined parylene dual-valved microfluidic system for on-chip unpowered microflow regulation. Incorporating a normally closed and a normally open passive check valve in a back-to-back configuration inside a microchannel, the dual-valved system has successfully regulated the pressure/flow rate of air and liquid without power consumption or electronic/magnetic/thermal transduction. By exclusively using parylene C (poly-para-xylylene C) as the structural material, the fabricated valves have higher flexibility to shunt flows in comparison to other conventional thin-film valves. A state-of-the-art multilayer polymer surface-micromachining technology is applied here to fabricate parylene microvalves of various designs. The parylene-based devices are completely biocompatible/implantable and provide an economical paradigm for fluidic control in integrated lab-on-a-chip systems. Design, fabrication, and characterization of the parylene dual valves are discussed in this paper. Testing results have successfully demonstrated that the microflow regulation of the on-chip dual-valved system can achieve a bandpass profile in which the pressure control range is 0-50 mmHg with corresponding flow rates up to 2 mL/min for air flow and 1 muL/min flow rate for water flow. This regulation range is suitable for controlling biological conditions in human health care, with potential applications including drug delivery and regulation of elevated intraocular pressure (IOP) in glaucoma patients  相似文献   

6.
《Computers & Fluids》2002,31(4-7):663-682
This paper deals with meniscus deformation and flow in an isothermal liquid bridge maintained between two circular rods, when one rod is subject to axial monochromatic vibrations. It concerns a fundamental aspect of the problem of crystal growth from melt by the floating-zone technique which is often considered in weightlessness conditions. In the absence of vibrations the bridge is cylindrical; but due to vibration the mean shape of the meniscus is no more cylindrical and the meniscus oscillates around this mean shape. Two models are developed. First, we take into account the pulsating deformations of the meniscus (free surface), but we assume that the mean shape of meniscus remains cylindrical (i.e., we neglect the influence of vibration on this mean shape). For this simple case, a solution of the problem for the pulsating meniscus deformations and the pulsating velocity field is found in explicit form. For the mean flow, the problem is solved numerically by a finite-difference method. The calculations demonstrate the contribution of two basic mechanisms of mean flow generation due to vibrations, related to the generation of mean vorticity in the viscous boundary layer near the rigid boundaries and surface-wave propagation at a free surface. The intensity of the mean flow induced by surface waves is found to be sharply increasing when the vibration frequency approaches the resonance values that are determined from the explicit form of the solution of pulsation problem. In the second model, we take into account both pulsating and mean deformations of the meniscus. The governing equations for the potential of pulsating velocity and mean velocity, and for the pressure, are solved by using a finite-difference method and a boundary-fitted curvilinear coordinate system fitting the free surface.  相似文献   

7.
Electrosprays routinely create sub-micron droplets containing functional molecules and show promise as a drop-on-demand dispensing method in the life sciences and materials processing. To precisely eject minute liquid volumes electrosprays must be turned on for milliseconds or less in the cone-jet or high-frequency pulsation mode. This work reports sequential phenomena which occur when electrosprays are triggered by sudden voltage steps. For low voltages the electrospray enters the pulsation mode but the pulsation frequency increases towards an asymptote, which increases with voltage. For higher voltages the asymptotic frequency is above a critical value and the electrospray switches to the cone-jet mode; after this the ejection rate increases until finally reaching a steady state. The total delay involves these phenomena plus the delay in forming a liquid cone; the latter depends strongly on both the initial and final voltage. The final electric field that must be applied is smaller when the electric field the liquid is subjected to initially is small—it is proposed that the inertia of a dynamically forming cone plays a role in lowering the voltage needed.  相似文献   

8.
This paper describes a new dissipative passive filter system to minimize torque pulsation and current harmonic noises in surface PMSM when derived with field oriented control algorithm. The passive filter system consists of complex dissipative filter cascaded by low pass filter. The complex filter has two setting frequency points, one at inverter switching frequency and the other at some average selected frequency point. The filter system is affecting the inverter switching frequency in such a way to decrease stress on the inverter switching elements and reducing the severe of dv/dt on the motor. The filter system uses series dissipative elements to assist in reshaping of the applied voltage waveform in order to provide almost semi-sinusoidal voltage to the motor windings. The simulation results show that the proposed filter system is effectively minimized torque pulsations and harmonic noises in surface PMSM.  相似文献   

9.
No-moving-part (NMP) valves, such as Tesla valves, are engineered fluid channels whose flow resistance depends on the flow direction. They have no moving parts and do not deform, but rely on inertial forces of the fluid to preferentially allow flow in one direction while strongly inhibiting flow in the reverse direction. NMP valves have significant advantages over active valves in terms of their reliability and easy manufacturability. Several previous studies have explored optimum designs of NMP valves, and the most widely used indicator of NMP valve performance is diodicity, defined as the ratio of the pressure drop of reverse flow to that of the forward flow. However, higher diodicity does not necessarily imply a lower pressure drop for the forward flow, and if this pressure drop is too high, significant pumping power is required, which makes the NMP valve inefficient for use in pumping applications. Therefore, for the design NMP valves, treating the forward and reverse flow pressure drops independently in a multiobjective formulation is preferable to optimization of the diodicity alone. In this paper, we propose a bi-objective topology optimization method for an optimum design of an NMP valve. One objective function is to minimize the pressure drop in the forward flow, and the other is to maximize the pressure drop in the reverse flow. A numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
No-moving-part (NMP) valves are microconduits able to partially rectify an oscillating fluid moving through them. The modeling of such valves is not at all trivial. Even greater difficulties arise when the behavior of the whole micropump equipped with those NMP valves is investigated, because of the complex fluid-dynamic phenomena interacting with deformable structures. This paper proposes a generalization of the efficiency modeling, nowadays used for single valves, to whole micropump equipped with them. Such modeling has been applied to design a novel, high efficiency NMP valve to be used in a piezoelectric micropump. The main feature of the new valve is the presence of some properly shaped vortex area along its fluid-dynamic pattern, allowing to improve micropump performance. For comparison purposes, the same modeling has been applied to a standard nozzle-diffuser NMP valve to be used with the same piezoelectric actuator. The experimental comparison of micropump performance (maximum flow rate and pressure head) shows that the proposed modeling technique is able to discriminate between better and worse performer. The effects of unsteady dynamic effects have been evaluated a posteriori, confirming their important weight on the actual performance of the micropumps equipped with NMP valves.  相似文献   

11.
Decreasing the Reynolds number of microfluidic no-moving-part flow control valves considerably below the usual operating range leads to a distinct "subdynamic" regime of viscosity-dominated flow, usually entered through a clearly defined transition. In this regime, the dynamic effects on which the operation of large-scale no-moving-part fluidic valves is based, cease to be useful, but fluid may be driven through the valve (and any connected load) by an applied pressure difference, maintained by an external pressure regulator. Reynolds number ceases to characterize the valve operation, but the driving pressure effect is usefully characterized by a newly introduced dimensionless number and it is this parameter which determines the valve behavior. This summary paper presents information about the subdynamic regime using data (otherwise difficult to access) obtained for several recently developed flow control valves. The purely subdynamic regime is an extreme. Most present-day microfluidic valves are operated at higher Re, but the paper shows that the laws governing subdynamic flows provide relations useful as an asymptotic reference.  相似文献   

12.
双螺杆挤出机流场数值模拟中流道进出口边界条件的探讨   总被引:1,自引:0,他引:1  
在对双螺杆挤出机流场的数值模拟中,流道进出口边界条件的设置一直是一个颇具争议的问题。由于事先无法获得计算域进出口平面上的真实边界条件,研究人员在进行双螺杆挤出机的流场分析时,大都采用放松边界条件。为了考察放松边界条件对双螺杆挤出机流场数值模拟结果的影响,本文采用聚合物流动分析软件POLYFLOW,在流量恒定的前提下对双螺杆挤出机流道进出口给定三种不同分布形式的速度边界条件,对其流场进行了数值模拟。数值计算结果表明,在体积流量恒定的条件下,流道进出口不同分布形式的速度边界条件对流场的影响主要集中在进出口附近区域,但对离进出口边界较远的流场影响很小。一般而言,当计算域所对应的螺杆较长时,可以忽略流道进出口的放松边界条件所引起的误差;当计算域较短时,不宜直接采用放松边界条件,而应根据螺杆的实际构型.在计算域的进出口增加适当长度的发展段。  相似文献   

13.
可控被动式减摇水舱能够通过气阀控制空气连通道延长了水舱的固有周期,实现宽频船舶横摇减摇.关阀时刻和关阀时间与船体横摇运动规律相关,由于船体在海浪中的随机运动难以准确计算.小波神经网络的半周期预测控制方法,预测船体横摇的下一个半周期,实时计算控制参数,拓宽减摇频带.通过半实物仿真验证,较传统的方法减摇性能有明显提升.  相似文献   

14.
This paper presents a polymer-based micropump for liquid control or drug delivery. The dimension of the pump was 20 × 24 × 3 mm3. A pair of O-ring SU-8 passive valves was fabricated by lift-off technique to control the fluid movement. Micropumps with dimple, bridge, and cantilever valves were studied. The PZT bimorph acted on the polymer membrane to periodically drive fluid. The maximum flow rate was 16.4 ml/min, and the back pressure was 1,525 mmH2O at 150 V (Vp-p). In frequency sweeping experiments, two flow rate peaks and back pressure peaks were analyzed. Bidirectional flow rate was achieved by changing the valve seat from a one-size hole to a step hole. The maximum backward flow rate was 5.1 ml/min, and the driving frequency was about 355 Hz higher than the forward flow rate driving frequency.  相似文献   

15.
A microfluidic flow-converter that transforms an oscillatory flow into a steady-like flow in a reciprocating-type pumping device is successfully developed in this study. The flow quality at the outlet is found to be significantly improved. The present micro-device is composed of two single-chamber PZT micropumps in parallel arrangement and can be fabricated using simple micro-electro-mechanical-system (MEMS) techniques. Based on the concept of the electronic bridge converter, the flow rectification is supported by four passive planar valves. Two operation modes, in-phase and anti-phase, were used to test the performance of the present device. In addition, the flow characteristics at the outlet were examined by an externally triggered micro-PIV system. The results reveal that the current flow-converter provided both high volume and smoothly continuous flow rates at the outlet when it was in anti-phase mode. Moreover, the volume flow rate was linearly proportional to the excitation frequency within a specific frequency regime. This indicates that the flow-converter was easily operated and controlled. The present microfluidic flow-converter has great potential for integration into future portable micro- or bio-fluidic systems.  相似文献   

16.
A multilayer capillary polymeric microfluidic device integrated with three normally closed electrowetting valves for timed fluidic delivery was developed. The microfluidic channel consisted two flexible layers of poly (ethylene terephthalate) bonded by a pressure-sensitive adhesive spacer tape. Channels were patterned in the spacer tape using laser ablation. Each valve contained two inkjet-printed silver electrodes in series. Capillary flow within the microchannel was stopped at the second electrode which was modified with a hydrophobic monolayer (valve closed). When a potential was applied across the electrodes, the hydrophobic monolayer became hydrophilic and allowed flow to continue (valve opened). The relationship between the actuation voltage, the actuation time, and the distance between two electrodes was performed using a microfluidic chip containing a single microchannel design. The results showed that a low voltage (4.5 V) was able to open the valve within 1 s when the distance between two electrodes was 1 mm. Increased voltages were needed to open the valves when the distance between two electrodes was increased. Additionally, the actuation time required to open the valve increased when voltage was decreased. A multichannel device was fabricated to demonstrate timed fluid delivery between three solutions. Our electrowetting valve system was fabricated using low-cost materials and techniques, can be actuated by a battery, and can be integrated into portable microfluidic devices suitable for point-of-care analysis in resource-limited settings.  相似文献   

17.

In this study, dynamic stability analysis of viscoelastic carbon nanotubes (CNTs) conveying pulsating magnetic nanoflow subjected to a longitudinal magnetic field is investigated. Based on Hamilton’s principle, the governing equations as well as boundary conditions, are extracted. The dynamic instability region and pulsation frequency of the CNTs are obtained through both the Galerkin technique and the Bolotin method. The effects of the nonlocal parameter gather with strain gradient parameter, Knudsen number, magnetic field, mass fluid ratio, fluid velocity, tension, gravity, viscoelastic characteristic of materials and boundary conditions on the dynamic instability of system are deliberated. The results indicate that increase in the pulsation frequency is caused by the decrease of nonlocal parameter and the increase of strain gradient parameter. Besides, it is revealed that by increasing Knudsen number the pulsation frequency decreases. Furthermore, the dynamic instability region and pulsation frequency of CNT can be enhanced due to the magnetic field effects.

  相似文献   

18.
An experimental study of pulsatile flow in microchannel is reported in this paper. Such a study is important because time-varying flows are frequently encountered in microdevices. The hydraulic diameter of the microchannel is 144 μm and deionized water is the working fluid. The pressure drop across the microchannel as a function of time is recorded, from which the average and r.m.s. pressure drops are obtained. The experiments have been performed in the quasi-steady flow regime for a wide range of flow rate, frequency of pulsations, and duty cycle. The results suggest that the pressure with pulsations lies between the minimum and maximum steady state pressure values. The average pressure drop with pulsation is approximately linear with respect to the flow rate. The theoretical expression for pressure has also been derived wherever possible and the experimental data is found to lie below the corresponding theoretical values. The difference with respect to the theoretical value increases with an increase in frequency and a decrease in flow rate, with a maximum difference of 32.7%. This is attributed to the small size of the microchannel. An increase in frequency of square waveform leads to a larger reduction in pressure drop as compared to rectangular waveform, irrespective of the duty cycle. The results can be interpreted with the help of a first-order model proposed here; the model results are found to compare well against the experimental results. A correlation for friction factor in terms of the other non-dimensional governing parameters is also proposed. Experimental study of mass-driven pulsatile flow in microchannel is being conducted for the first time at these scales and the results are of both fundamental and practical importance.  相似文献   

19.
The purpose of this paper is to combine the ability of fuzzy set to represent more realistic situations with the well-established traditional queueing system model problem. We are forced to employ subjective probabilities when there is no information about a model or some parameters of a model are vague. The information and data are very fuzzy, because they are frequently very little, 'and may be sometimes obtained from experts subjectively. We apply fuzzy set theory to the closed multiclass model with the fuzzy queues. thus, we represent the characteristic and performance of the closed multiclass model based on the proposed fuzzy set theory.  相似文献   

20.
The minimal-cost network flow problem with fixed lower and upper bounds on arc flows has been well studied. This paper investigates an important extension, in which some or all arcs have variable lower bounds. In particular, an arc with a variable lower bound is allowed to be either closed (i.e., then having zero flow) or open (i.e., then having flow between the given positive lower bound and an upper bound). This distinctive feature makes the new problem NP-hard, although its formulation becomes more broadly applicable, since there are many cases where a flow distribution channel may be closed if the flow on the arc is not enough to justify its operation. This paper formulates the new model, referred to as MCNF-VLB, as a mixed integer linear programming, and shows its NP-hard complexity. Furthermore, a numerical example is used to illustrate the formulation and its applicability. This paper also shows a comprehensive computational testing on using CPLEX to solve the MCNF-VLB instances of up to medium-to-large size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号