首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了多域光网络中的路由保护问题。为了避免多域光网络通路保护二步算法可能导致的多域陷阱问题,提出了一种基于Suurballe算法扩展的多域联合路由保护算法。仿真表明,相比传统的多域通路保护二步算法,该算法资源利用率高,阻塞率低,平均每连接跨域数小。  相似文献   

2.
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risk-link-group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.  相似文献   

3.
Routing, connection setup, and path computation are well-known problems in multi-domain networks, which have been largely analyzed in pure IP (packet) networks. In circuit-switched optical multi-domain networks, there remain, however, a number of routing and path computation challenges. Traffic grooming means combining a number of low-speed traffic streams so that the high capacity of each lightpath may be used as efficiently as possible, as path computation implements the core of the grooming function, it is obvious that solutions for the traffic grooming problem in optical multi-domain networks are still not sufficiently investigated. In this study we propose a methodology to address the problems of routing, connection setup, and traffic grooming in optical multi-domain networks, which adapts a two-level hierarchical routing scheme and full-mesh topology abstraction algorithm to improve routing scalability and lower inter-domain blocking probabilities; additionally our proposed methodology adapts a scheme for traffic grooming in DWDM multi-domain networks to improve the resources usage. To test our proposed methodology we propose a detailed IP/MPLS-based ASON/GMPLS multi-domain multilayer test framework.  相似文献   

4.
Although multi-domain survivability is a major concern for operators, few studies have considered the design of post-fault restoration schemes. This paper proposes two such strategies, based upon hierarchical routing and signaling crankback, to handle single and multi-link failure events in multi-domain IP/MPLS networks (also extendible to optical DWDM networks). Specifically, the hierarchical routing strategy relies upon abstracted domain information to compute inter-domain loose routes, whereas the crankback scheme applies signaling re-tries to restore paths in a domain-by-domain manner. The performance of these proposed solutions is then analyzed and compared via simulation.  相似文献   

5.
光网络选路和波长分配研究   总被引:3,自引:0,他引:3  
文章在叙述了光网络中选路和波长分配(RWA)要解决的基本问题后,对有关方面的近年研究作了综述,主要包括:虚拓扑重构、业务量疏导的RWA、多播RWA、抗毁网络的RWA.抗毁问题涉及WDM网络的抗毁选路、区分可靠性、网状网的快速恢复、多故障下的抗毁.  相似文献   

6.
梁兵  沈建华  杨帆  程希  于飞 《光通信技术》2011,35(10):21-23
生存性是保证业务服务质量的关键,多域光网络生存性问题中,由于存在多域间拓扑和路由信息不可见等约束,导致生存性实现较为困难.提出了将多域光网络进行逻辑聚合的思路,在此基础上分别针对域内和域间提出了非等值负载保护和M∶1保护机制.域内的非等值负载保护机制可以根据节点数以及业务量动态地分配保护路径,从而有效地提高资源利用率.  相似文献   

7.
The advent of high-capacity optical fiber has increased the impact of a network failure in high-speed networks since a large volume of data can be lost even in a short outage. Self-healing algorithms have previosly been proposed to achieve fast restoration from a failure, but their success greatly depends on how traffic is distributed and how spare capacity is dimensioned over the network when a failure happens. Thus, in order to offer better network survivability, it is crucial that a network manager realizes a restorable traffic assignment in response to changing traffic demand and facility network configuration. The authors address the problem of virtual path routing for survivable asynchronous transfer mode (ATM) networks. An algorithm is developed to find a virtual path configuration and bandwidth assignment that minimizes the expected amount of lost flow upon restoration from a network failure. The concept of two-step restoration is introduced to achieve fast restoration as well as optimal reconfiguration. The problem can be formulated as a nonlinear, nonsmooth multicommodity flow problem with linear constraints. A modified flow deviation method is developed to obtain a near-optimal solution, where premature convergence to a nonsmooth point could be avoided by adjusting an optimization parameter. The result of the performance evaluation indicates that the proposed routing scheme can detect the links that are vulnerable to a failure under the current traffic demand pattern and adjust a flow so as to improve the network survivability level  相似文献   

8.
Wei  Wei  Zeng  Qingji  Wang  Yun 《Photonic Network Communications》2004,8(3):267-284
In this paper, we study the problem of multi-layer integrated survivability (MLIS) for efficiently provisioning reliable traffic connections of arbitrary bandwidth granularities in the integrated optical Internet. We decompose the MLIS problem into three sub-problems: survivable strategies design (SSD), spare capacity dimensioning (SCD), and dynamic survivable routing (DSR). First, a review of network survivability in multi-layer IP/WDM networks is provided. Then, multi-layer survivability strategies are proposed and it is observed how these strategies could be applied to the integrated optical Internet architecture. We also present an enhanced integrated shared pool (ISP) method for solving the static MLIS problem (i.e., the SCD sub-problem) and the priority-based integer programming formulations are also given. Moreover, we design a novel scheme called the differentiated integrated survivability algorithm (DISA) to solve the dynamic MLIS problem (i.e., the DSR sub-problem), which employs flexible survivable routing strategies according to the priority of the traffic resilience request. Performance simulation results of DISA show that our adaptive survival schemes perform much better in terms of traffic blocking ratio, spare resource requirement, and average traffic recovery ratio compared with other solutions in the optical Internet.  相似文献   

9.
项鹏  王荣 《中国激光》2007,34(12):1648-1654
区分可靠性的通路保护方案既能为光网络中具有不同可靠性需求的业务提供有效的故障保护,又能优化网络资源的利用,是一种高效的生存性机制。但目前此类问题的研究主要是集中于传统的单域光网络中,所得的研究成果无法直接运用于具有多域特点的下一代光网络中。针对这一问题,在对以往通路保护算法进行改进的基础上提出了一种适用于多域光网络中的支持区分可靠性的通路保护算法,并对其性能进行了计算机仿真研究。仿真结果表明,该算法不仅能满足多域光网络中不同业务的可靠性需求,而且能提高网络资源的利用率、降低业务连接的阻塞率。  相似文献   

10.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

11.
Survivability has been widely recognized as an important design issue for optical networks. In practice, as the network scale keeps expanding, this design problem becomes more critical. Due to scalability and domain privacy, designing the protection scheme in multi-domain networks is more difficult than that in single domain networks. The path computation element (PCE) is known as an efficient architecture to compute optimal traffic engineering (TE) paths in multi-domain multilayer networks. Based on the PCE architecture, we first propose a new dynamic domain-sequencing scheme that considers the load balance of inter-domain links and then propose an improved segment-shared protection approach called DDSP. It can provide 100% protection ability for multiple failures that each single domain has only one failed link. Finally, the protection based on the optimal dynamic domain-sequencing scheme, called OPT, is designed, to evaluate performance of our algorithm and to provide the good bounding for the dynamic domain-sequencing scheme with limited intra TE information. Simulation evaluation shows that the proposed scheme is effective in multi-domain path protection with more efficient resource utilization, lower blocking probabilities and less inter-domain cost. Furthermore, the performance of it is near to OPT.  相似文献   

12.
With the number of wavelengths on fibers keeps increasing, the size and the cost of Optical Cross-Connect (OXC) are greatly enhanced and then the control and management of optical switches become more and more complicated. Therefore, the technique called waveband switching is proposed to reduce the size and the cost of OXC; that is, to save the All-Optical (OOO) switching ports in OXC. However, the existing waveband switching algorithms are all limited in single-domain optical networks. Actually, with the scale of optical backbone keeps enlarging, the network is divided to multiple independent domains to perform the hierarchy routing for achieving the scalability. In order to reduce the size and the cost of OXC meanwhile to achieve the scalability in multi-domains, in this paper we propose a new heuristic algorithm called Waveband Grooming with Layered Auxiliary Graph (WGLAG) since the waveband grooming problem is the NP-hard to perform the inter-domain routing based on the virtual topology of multi-domain network and the intra-domain routing based on the physical topology of single-domain network. In intra-domain routing with waveband grooming of each single-domain, we propose the Layered Auxiliary Graph (LAG) that includes one virtual topology layer and multiple waveband-plane layers to compute a single-hop, or multi-hop or hybrid waveband route for each connection request based on the sub-path waveband grooming scheme. Simulation results show that, WGLAG not only can effectively save more switching ports to reduce the cost of OXC but also can obtain lower blocking probability than other algorithm.  相似文献   

13.
With the large-scale deployment of optical network equipments, the problems of separated domains management and the multi-domain-based survivability have become the primary challenge in new generation intelligent optical networks. Aimed at resisting multi-link failures in multi-domain optical networks (MDON), a heuristic multi-link fault-tolerant (MLFT) algorithm for survivability in MDON is proposed in this article, which applied Hamiltonian cycle protection and segment-shared protection to establish a novel survivability strategy for either intra-domain??s or inter-domain??s multiple links, respectively. Furthermore, a new virtual-link mapping scheme and link-cost formulas are presented to encourage the appropriate routing selection and load balancing, which can also contributed to better resource utilization ratio and blocking ratio. Simulation results show that MLFT realizes the multi-link fault-tolerant survivability at a lower cost with better performances in redundancy ratio, blocking ratio, and computation complexity.  相似文献   

14.
Routing for shared protection in multi-domain networks is more difficult than that in single-domain networks because of the scalability requirements. We propose a novel approach for shared protection routing in multi-domain networks where the key feature is a special Topology Aggregation. In this Topology Aggregation, only some potential intra-domain paths (intra-paths for short) are selected for carrying working and backup traffic between domain border nodes. The abstraction of each intra-path to a virtual edge makes the original multi-domain network to become an aggregated network. On the aggregated network, a single-domain routing algorithm for shared protection can be applied for obtaining the complete routing solutions. The experiments show that the proposed approach is scalable. Moreover it is close to the optimal solution in single-domain networks and outperforms the previously proposed scalable solutions in multi-domain networks.  相似文献   

15.
Inter-domain path computing is one big issue in multi-domain networks . The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domain path computing, this paper proposed a topology aggregation scheme to abstract the edge nodes and their connected inter-domain link as one vertex to achieve more optimal paths and confidentiality guarantee. The effectiveness of the scheme has been demonstrated on solving wavelength routing in multi-domain Wavelength Division Multiplexing (WDM ) network via simulation. Simulation results show that this scheme reduces at least 10% inter-domain blocking probability, compared with the traditional Domain-to-the-Node (DtN) scheme.  相似文献   

16.
With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user’s utility, the network operator’s utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator’s utility, while IEP has better user’s utility.  相似文献   

17.
该文首先探讨了抗毁WDM网中支持QoS的分层图模型,在此基础上提出一种抗毁WDM网中支持QoS的选路和波长分配算法。该算法根据上层业务不同的QoS要求,对其光路建立请求区别对待,以满足它们不同的阻塞率和恢复率要求。计算机仿真结果表明该算法既满足了上层业务不同的QoS要求,同时又充分利用了有限的网络资源,使全网的平均阻塞率降低。  相似文献   

18.
Previous research on survivability with differentiated reliability in wavelength-division-multiplexing (WDM) optical mesh networks mostly considered the failure probability of a fiber link with the link length that may not be a good solution for consideration of shared-risk link groups (SRLGs). In this paper, we propose a new model of failure probability with the SRLG constraints in WDM optical mesh networks. Based on this model, we present the backup resources assignment and the routing selection method with the differentiated reliable requirements of users. To evaluate the performances of this model, we propose a novel survivable routing algorithm called partial SRLG-disjoint protection (PSDP) to tolerate the single-SRLG failure. Compared with the previous algorithm, PSDP can obtain a better resource utilization ratio and lower blocking probability. Simulation results are shown to be promising.  相似文献   

19.
We study a class of all-optical networks using wavelength-division multiplexing (WDM) and wavelength routing, in which a connection between a pair of nodes in the network is assigned a path and a wavelength on that path. Moreover, on the links of that path no other connection can share the assigned wavelength. Using a generalized reduced load approximation scheme we calculate the blocking probabilities for the optical network model for two routing schemes: fixed routing and least loaded routing  相似文献   

20.
A summary of research on survivable IP networks overlaid over WDM networks is presented. The WDM networks are part of optical transport service providers, who lease lightpath services to institutions with IP networks. The lightpath services realize IP links for IP networks, and they have different protection grades such as unprotected and protected. The research included considering new network survivability requirements and incorporating them into network design problems. The cost of survivable IP over WDM networks is compared over three scenarios. Each succeeding scenario has the WDM network provide more flexible services, and the IP and WDM networks become more integrated. We consider the problem of setting up lightpaths for an IP network so that the network will remain connected after a fiber link fault. Algorithms to find the lightpaths and minimize cost are given. The network costs under the three scenarios are compared by simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号