首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
The effect of vertical internal baffles on the particle mixing and grain drying characteristics in a batch fluidized bed column is investigated. Experimental work was carried out in a 3 m high rectangular fluidized bed dryer of cross sectional area of 0.15 mx0.61 m at different operating conditions using paddy, a group D particle, as the fluidizing material. The results of the study showed that the fluidized bed dryer system with vertical internal baffles gave better particle mixing effect in the bed of particles than that without vertical internal baffles. This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking up the large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bed of particles before finally erupting at the bed surface. This improves the contacting efficiency and enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate was obtained in the falling rate period because the higher contactin efficiency increases the evaporation rate at the particle surface. However, the drying rate in the diffusion regiol shows little improvement because the moisture diffusivity does not depend on the contacting efficiency. The fluidized bed dryer with vertical internal baffles could therefore be used in the initial rapid drying stage in a two stage drying strategy for paddy. The insertion of vertical internal baffles into a fluidized bed system improves the processing of Group D particles in a fluidized bed system especially if the system is large in scale.  相似文献   

2.
The effect of vertical internal baffles on the particle mixing and grain drying characteristics in a batch fluidized bed column is investigated. Experimental work was carried out in a 3m high rectangular fluidized bed dryer of cross sectional area of 0.15 m×0.61 m at different operating conditions using paddy, a group D particle, as the fluidizing material. The results of the study showed that the fluidized bed dryer system with vertical internal baffles gave better particle mixing effect in the bed of particles than that without vertical internal baffles. This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking up the large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bed of particles before finally erupting at the bed surface. This improves the contacting efficiency and enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate was obtained in the falling rate period because the higher con  相似文献   

3.
软木干燥中湿空气和过热蒸汽的外部传热   总被引:1,自引:0,他引:1       下载免费PDF全文
In kiln drying of softwood timber, external heat and moisture mass transfer coefficients are important in defining boundary temperature and moisture content at the wood surface. In addition, superheated steam drying of wood is a promising technology but this has not been widely accepted commercially, partially due to the lack of understanding of the drying phenomena occurred during drying. In this work, experimental investigation was performed to quantify the heat transfer between wood surface and surrounding moist air or superheated steam. In the experiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperatures of 60℃/50℃,90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The last two schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. The circulation velocity over the board surface was controlled at 4.2 m·s-1. Two additional runs (90℃/60℃) using air velocities of 2.4 m·s-1 and 4.8 m·s-1were performed to check the effect of the circulation velocity. During drying, sample weight and temperatures at wood surface and different depths were continuously measured. From these measurements, changes in wood temperature and moisture content were calculated and external heat-transfer coefficient was determined for both the moist air and the superheated steam drying.  相似文献   

4.
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWthlab-scale pressurized fluidized bed(inner diameter = 81–100 mm, H =2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature(800 ℃–900 ℃), operating pressure(0.1–0.4 MPa), excess air level(16%–30%) and flow pattern on NOx and N_2 O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOxand N_2 O emissions, and the N_2 O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOxbut enhance its conversion to N_2 O. With the rise of the excess air level and fluidization number, NOxemissions grow distinctly while N_2 O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure.  相似文献   

5.
对撞流干燥的实验与理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
The experiments of one-stage semi-circular and two-stage semi-circular impinging stream drying as well as the vertical and semi-cricular combined impinging stream drying were carried out.The velocity distribution and the mean residence time of particles,and the influence of various factors on drying characteristics were studied.A mathematical model of granular material drying in a semi-circular impinging stream dryer was proposed,in which the flow characteristics as well as the heat and mass transfer mechanisms were considered.Reasonable numerical methods were used to solve the equations.Under various conditons,the calculated results of drying rate and moisture content versus time were obtained.The results indicate that constant drying rate period does not exist in a semi-circular impinging stream dryer.Appropriate semi-cricular stage number and curvature radius,flow-rate ratio,air velocity,and higher inlet air temperature should be used for enhancing the drying process.  相似文献   

6.
In most industrial fluidization units, two- or three-stage cyclone systems are used to clean the product gases. To return the solids to the bed, these cyclones are fitted with diplegs. By pass of gas from the bed through the dipleg is partially overcome by the back pressure build-up in the dipleg and by adding a trickle valve at the bottom of the dipleg. Diplegs of primary cyclones, operating at a high solid loading behave differently from diplegs of secondary and tertiary cyclones which operate at low solid loading. Both types have been investigated by pressure drop measurements, visual observation and by measurements of the air flow rate flowing up the riser. The primary dipleg was also studied using electrical capacitance tomography. The results are reported hereafter and will give a first indication towards the right design of the dipleg and the selection of the trickle valve. The influence of gas flow in the dipleg on the conversion in a catalytic fluidized bed reactor is found to be negligible.  相似文献   

7.
Hydrodynamics of conical fluidized bed differ from that of columnar beds by the fact that a velocity gradient exists along the axial direction of the bed.The gas–liquid–solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operations.Such a device is of considerable industrial importance as evident from its wide applications in chemical,refining,petrochemical,biochemical processing,pharmaceutical and food industries.To explore this,a series of experiments have been carried out for homogeneous well-mixed ternary mixtures of dolomite of varying compositions in a three-phase conical fluidized bed.The hydrodynamic characteristics determined included the bed pressure drop,bed fluctuation and bed expansion ratios.The single and combined effects of operating parameters such as superficial gas velocity,superficial liquid velocity,initial static bed height,average particle size and cone angle on the responses have been analyzed using response surface methodology(RSM).A 25 full factorial central composite experimental design has been employed.Analysis of variance(ANOVA) showed a high coefficient of determination value and satisfactory prediction second-order regression models have been derived.Experimental values of bed pressure drop,bed fluctuation and bed expansion ratios have been found to agree well with the developed correlations.  相似文献   

8.
Drying is an important unit operation in processing of biological resources. The drying process may influence the product properties and quality, which may shrink, break or undergo rheological, physical and biochemical changes. The important parameters responsible for such changes are drying conditions, type of drying technology and residence drying time. Thermal conductivity, thermal-mass diffusivity, enthalpy, porosity and density are the main material property and heat-mass transfer parameters, which are essential for understanding the changes in product quality and for designing and dimensioning the drying processes. In this paper physical properties of food products undergoing a combined sublimation and evaporation were studied. Pieces of vegetables and potatoes were dried in a heat pump fluidized bed dryer at combined modes with temperatures below the freezing point in the beginning and a final drying step at temperatures above the freezing point. Samples of products were tested at different moistu  相似文献   

9.
组合式流化床中以高钙镁钛渣为原料制取TiCl4   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7-1.1m·s-1, and inlet amount of solid materials is 4.6-7.0kg·h-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m-2·d-1 in relation to 25.0-40.0t·m-2·d-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.  相似文献   

10.
In kiln drying of softwood timber, external heat and moisture mass transfer coefficients are important in defining boundary temperature and moisture content at the wood surface. In addition, superheated steam drying of wood is a promising technology but this has not been widely accepted commercially, partially due to the lack of understanding of the drying phenomena occurred during drying. In this work, experimental investigation was performed to quantify the heat transfer between wood surface and surrounding moist air or superheated steam. In the experiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperatures of 60℃/50℃, 90℃/60℃, 120℃/71℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The last two schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. The circulation velocity over the board surface was controlled at 4.2m·s-1. Two additional runs (90℃/60℃) using air velocities of 2.4m·s-1 and 4.8m·s-1 were performed t  相似文献   

11.
This study quantifies emissions of hydrocarbon terpenes from the drying of sawdust in packed moving bed dryers, through the production chain to the finished pellets, and determines the parameters suitable for emission control. The terpene content in softwood sawdust and pellets was analyzed using gas chromatography. The distribution of VOC emissions over the bed was measured with a flame ionization detector. After drying, 30–40% of the initial terpenes remain in the wood, 20–30% remain after grinding, and 10–15% remain after pelleting. Dryer emissions correlate with residence time and final sawdust moisture content. Pellet press emissions correlate with pellet moisture content.  相似文献   

12.
S. Pang 《Drying Technology》2001,19(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

13.
《Drying Technology》2013,31(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

14.
The effect of water blanching treatment and the inlet air temperature on drying kinetics as well as the quality attributes of carrot cubes dried in a spout–fluidized bed dryer at 60, 70, 80, and 90°C were analyzed. The material shrinkage and the rehydration potential were calculated to assess the changes in quality of dried carrots. It was found that the value of the air velocity during the drying of carrot cubes in a spout–fluidized bed dryer should be related to the moisture content of the carrot particles. A high value of air velocity at the beginning of the drying cycle and a lower value for the later stages were also required. The linear equation was correlated to the data of shrinkage of raw and blanched carrots. Blanching significantly influenced the coefficients in the shrinkage model derived for drying of carrot cubes in a spout–fluidized bed dryer, while drying temperature did not influence the shrinkage of carrot particles. The intensity of heat and mass transfer during spout–fluidized drying of carrot cubes was dependent on the drying temperature. A correlation was developed to calculate the values of effective moisture diffusivity of dried carrot cubes as a function of the moisture content and temperature of the material. It was observed that for any given time of rehydration, both the moisture content and the rehydration ratio calculated for samples dried at 60°C were higher than for samples dried at temperatures of 60, 70, 80, and 90°C.  相似文献   

15.
The effects of gas velocity (0.32 to 0.67 m/s), inlet gas temperature (25 to 100 °C) and the mass ratio of starch to inert particles (0.1 to 0.4) on the drying rate of starch in a 0.083 m-ID × 0.80 m-high inert medium fluidized bed were investigated. The drying mechanism in an inert medium fluidized bed can be classified into adhesion-dispersion, evaporation and disintegration steps. The drying rate increases with the increasing inlet gas temperature and velocity; the rates being about 10 times those reported for an agitated pan dryer. However, the drying rate decreases slightly as the mass ratio of starch to inert particles increases. Also, the drying rate exhibits a maximum at an optimum bed porosity. The drying rate data obtained in an inert medium fluidized bed have been correlated with the relevant dimensionless groups, i.e. Stefan and particle Reynolds numbers based on the theory of isotropic turbulence.  相似文献   

16.
A pilot scale fluidized bed dryer with an inert energy carrier (steel, glass beads ranging from 2.7 to 6.5 mm) was used to investigate the drying of carrots. The effects of sample diameter, inert material type, inert material diameter, amount of inert material, air velocity, and temperature on the rate of drying were studied. A mathematical model was proposed for predicting the drying rate and temperature of drying material. It was found that presence of inert particles enhance the rate of drying. The results of this study also revealed that, although the rate of drying increases with decreasing sample diameter, increasing the inert material thermal conductivity, and increasing air temperature, but the inert material diameter and air velocity have no significant effects on the rate of drying. The independence of rate of drying on air velocity especially in well-fluidized systems indicates that external diffusion is not a controlling step in this process. Also the presence of inert materials causes the drying material to reach more rapidly to its final internal temperature.  相似文献   

17.
A fluidized bed dryer (FBD) and a combined microwave/fluidized bed dryer (CMFD) are used to dry the fresh ripe peppercorns. The average moisture content vs. elapsed drying time, and drying rate vs. average moisture content are experimentally investigated. It is found that the microwave field from the CMFD can increase the potential of the conventional fluidized bed drying. The drying rates of both dryers are dependent on the inlet air temperature and velocity. For the CMFD, the effects of the air velocity on the drying rate are found to be opposite to our previous results tested with white pepper seeds i.e., the drying rates of the fresh ripe peppercorns decreased with increasing air velocity. By using a CMFD, the drying time required to reach the desired moisture content can be reduced to 80-90% of the drying time required for a FBD at the same drying air temperature and velocity. The color of the product dried by a CMFD is also attractive: it becomes flaming yellow, instead of black as obtained from a FBD. The physical structure of the peppercorn, before and after the drying process is also investigated by a metallurgical macroscope and an image analyzer. Different from drying by a FBD, the external form and matter of the white pepper seed are still maintained, even after passing through the drying process.  相似文献   

18.
洗衣粉悬浮液在惰性粒子流化床中干燥的研究   总被引:3,自引:0,他引:3  
针对气体分布板开直孔的惰性粒子流化床,开展了洗衣粉悬浮液在床内的干燥性能研究。测定了流化床的床层压降曲线,考察了进料量、进风温度、进风速度及惰性粒子直径对于流化床传热性能的影响,且与气体分布板开斜孔的传热性能进行了初步比较。结果表明,流化床的床层压降主要是由惰性粒子的流化阻力所致;适当增加进料量和进风速度,或减小惰性粒子直径,以及将气体分布板的孔道由直孔改为斜孔,均可提高流化床的传热性能,但过高的进风温度则可能导致传热性能的下降。  相似文献   

19.
《Drying Technology》2013,31(4):779-794
Abstract

A fluidized bed dryer (FBD) and a combined microwave/fluidized bed dryer (CMFD) are used to dry the fresh ripe peppercorns. The average moisture content vs. elapsed drying time, and drying rate vs. average moisture content are experimentally investigated. It is found that the microwave field from the CMFD can increase the potential of the conventional fluidized bed drying. The drying rates of both dryers are dependent on the inlet air temperature and velocity. For the CMFD, the effects of the air velocity on the drying rate are found to be opposite to our previous results tested with white pepper seeds i.e., the drying rates of the fresh ripe peppercorns decreased with increasing air velocity. By using a CMFD, the drying time required to reach the desired moisture content can be reduced to 80–90% of the drying time required for a FBD at the same drying air temperature and velocity. The color of the product dried by a CMFD is also attractive: it becomes flaming yellow, instead of black as obtained from a FBD. The physical structure of the peppercorn, before and after the drying process is also investigated by a metallurgical macroscope and an image analyzer. Different from drying by a FBD, the external form and matter of the white pepper seed are still maintained, even after passing through the drying process.  相似文献   

20.
The effects of gas velocity, inlet gas temperature and the solid feed rate on the drying efficiency, the outlet solid moisture content, bed temperature in each stage, the outlet gas humidity and temperature in a rectangular acryl multistage fluidized bed (0.172 m×0.192 m×1.5 m-high) with a downcomer (0.04 m-I.D.) were investigated. The experiments were performed by using 1.9 mm millet particles. The final moisture contents of the solids increased with increasing the solid feed rate. The drying efficiency increased with increasing the wetted solid feed rate but decreased with increasing the inlet gas temperature. The drying performance of the multistage fluidized bed was compared with the single-stage fluidized bed and found to be superior under identical operation conditions. The model predicted values were well matched with the experimental data in the multistage fluidized bed dryer. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号