首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured in-plane stresses developed in a borosilicate glass (BSG) film during its constrained sintering on a rigid substrate. Samples were prepared by casting BSG slurries on a silicon substrate and sintered inside a hot stage at 715°C just above the glass-softening temperature. Inplane stresses from the constrained-film sintering were determined by wafer-curvature measurements using an optical system. The measured stresses were tensile and rose rapidly from zero to a maximum level of 20 kPa during the initial stage of sintering and gradually decreased to zero at the final stage; these stresses were considerably smaller than those calculated from available microstructural models. We also measured the densification profiles of the free and constrained films. The stresses had no apparent effect on the densification profile of the constrained film up to 90% relative density; but beyond that, the densification kinetics were reduced in the constrained film. We believe that the stresses could have prevented a few large pores from shrinking during the initial stage of sintering, which then leads to an overall lower density and larger pores in the constrained film.  相似文献   

2.
Densification and Shrinkage During Liquid-Phase Sintering   总被引:2,自引:0,他引:2  
The process of densification and shrinkage during the final stage of liquid-phase sintering is described. The densification occurs by the liquid filling of pores during grain growth. The pore filling results in an instantaneous drop of liquid pressure in the compact and causes gradual accommodation of grain shape. The grain shape accommodation by the growth causes the specimen shrinkage. At the same time, the grains tend to restore their spherical shape, resulting in microstructure homogenization around filled pores. The process of densification and shrinkage appears to be determined by the growth of grains during sintering.  相似文献   

3.
In the final sintering stage, nano-sized powder frequently forms a pore structure where most pores are surrounded by more than 5 grains. The pore structure is different from that of coarse powder. In this study, the densification behavior of nano-sized powder is modelled and simulated in the final sintering stage. The porous body has the initial size distribution of pores, represented as a Weibull function. The mechanical interaction between pores is analyzed to simulate the evolution of porosity characteristics as well as densification kinetics. The densification rate for the size-distributed pores is lower than that for single-sized ones. The experimental relationship between the densification rate and the porosity could well be reproduced by choosing appropriate pore-size distributions. The simulation also shows that the sintering stress with densification may increase or decrease depending on the size distribution, but is remarkably lower than that for single-sized pores.  相似文献   

4.
The microstructure evolution and densification kinetics of alumina containing 10 and 20 vol% calcium aluminosilicate glass were studied, for sintering under vacuum and air at 1600°C. Residual porosity was always present in the air-fired samples. The kinetic analysis lent strong support to the notion that trapped gases inhibited the densification and limited the attainment of full density. The samples containing 20 vol% glass were able to reach full density during vacuum sintering. However, the samples containing 10 vol% glass contained some residual porosity even after vacuum sintering, which was attributed to the preferential volatalization of liquid phase.  相似文献   

5.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   

6.
The effect of adding up to 13.4 wt.% CaCO3 on the densification behavior of aluminium nitride (AlN) was investigated during pressureless sintering between 1100 and 2000 °C. The presence of second-phases, weight losses, Ca contents, and microstructures of sintered samples were correlated with the densification curves. Two microstructural aspects determined the densification of aluminum nitride with CaCO3: second-phase evolution path and formation of large pores. Additions of small amounts of CaCO3 caused the formation of higher melting point calcium aluminates (mainly CA2) that increased the temperature at which liquid-phase sintering process started, but once activated rapid densification was observed. For larger CaCO3 amounts, liquid-phase started to form at lower temperature, but the initial densification was slow, diminishing the advantage of lower C12A7 related eutectic temperature. Irrespective of the initial CaCO3 content, all second-phase evolution paths converged to CA phase above 1600 °C, suggesting that during sintering of AlN with CaO at high temperatures, a liquid phase with composition of CA phase is more stable than others compositions. The effect of this composition changing on densification is discussed. Large pores were formed in the sites originally occupied by large particles of CaCO3 and retarded the bulk densification in samples with high additive contents.  相似文献   

7.
In this paper numerical simulations of the viscous sintering phenomenon are presented, i.e., of the process that occurs (for example) during the densification of a porous glass heated to such a high temperature that it becomes a viscous fluid. The numerical approach consists of simulating the shrinkage of a two-dimensional unit cell which is in some sense representative for the porous glass. Hence it is assumed that the microstructure of the glass can be described by a periodic continuation in two directions of this unit cell. In this way it is possible to obtain insights into the viscous sintering process with respect to both pore size and pore distribution of the material. In particular this model is able to examine the consequences of microstructures on the evolution of the pore size distribution. The major finding is that the pores vanish in order of size one after another-the smallest pores first, followed by the larger ones. Moreover, it is shown that pores with concave boundary parts may initially grow before they start shrinking at a later stage.  相似文献   

8.
This paper reports a method for preparing silica glass by pressureless spark plasma sintering (PL-SPS), which can rapidly manufacture silica glass parts with complex structures by coupling with stereolithography 3D printing technology. The rapid sintering process and microstructure evolution of silica glass prepared by PL-SPS were mainly investigated. The experimental results showed that the sintering temperature and dwelling time were the main factors affecting the PL-SPS of silica glass. The microstructure evolution indicated that the densification rate of the sample was very fast from 1250 °C to 1300 °C, and the interlayer defects caused by the printed layer thickness could be healed in the final stage of densification. Like conventional pressureless sintering, silica glass with a relative density of more than 99% and a visible-light transmittance of more than 90% could also be obtained through PL-SPS, but the entire working time was shortened from 22.53 h to 0.49 h.  相似文献   

9.
Densification controlled by solution-precipitation during liquid-phase sintering was analyzed for the aluminamagnesium aluminosilicate glass system. As a model system for liquid-phase sintering, narrowly sized alumina powders and up to 20 vol% magnesium aluminosilicate glass samples were isothermally sintered at 1550° to 1650°C. Densification rate increases with increasing liquid content and sintering temperature but decreases with increasing density. For samples with >15% grain growth, the densification rate during the solution-precipitation stage of sintering was proportional to (particle size)−2 and thus interface reaction-controlled. Activation energies ranged from 270 to 500 kJ/mol over the relative density range of 66% to 96%, respectively. The low activation energy is attributed to densification by particle rearrangement, whereas the higher activation energy is due to densification controlled by interface-reaction-controlled solution-precipitation. Intermediate activation energies are attributed to simultaneous densification by the two mechanisms.  相似文献   

10.
施剑林 《硅酸盐学报》1997,25(5):499-513
讨论了二维及三维闭口气孔的稳定性,发现二维状态时气孔的稳定性问题可以用数学方法根据气孔的颗粒配位数和二面角的大小解析;而三维状态时气孔则可借助球形气孔模型近似地确定。在这一模型的基础上,建立了烧结中期和后期的气孔显微结构模型,并由此推导了因相烧结中,后期作用于气孔的烧结应力和固相烧结中斯和后期的致密化方程。  相似文献   

11.
《Ceramics International》2019,45(14):17536-17544
WCoB based cermets were prepared by spark plasma sintering at sintering temperature among 600°C-1200 °C. The phase evolution was investigated by detecting density behavior, phase composition, microstructure and mechanical properties during sintering process. The sintering process can be divided into three stages: powder densification, solid phase reaction and liquid phase sintering. WCoB hard phase forms at 1000 °C during solid phase sintering, showing better mechanical properties than Co2B, especially on Vicker's hardness. WCoB hard phase forms on the basis of Co2B binary boride and its content increases in liquid phase sintering stage with high density. The Vicker's hardness and transverse rupture strength (TRS) reach the maximum value of 1262 Hv and 1212 MPa at 1200 °C and 1170 °C, respectively. The fracture toughness reaches the maximum value of 21.8 MPa m1/2 at 1050 °C, and the inter-granular fracture is the main fracture mechanism.  相似文献   

12.
反应析晶烧结法制备可加工氟闪石玻璃陶瓷致密化研究   总被引:2,自引:2,他引:0  
章为夷  高宏  张力明 《硅酸盐通报》2009,28(5):1088-1092
采用两种加热方式对氟云母晶体和普通钠钙玻璃混合粉末进行烧结,用扫描电镜观察烧结过程中玻璃陶瓷的组织演变,结合样品收缩率和密度的变化,研究了玻璃陶瓷的致密化行为.研究结果表明,致密化是通过玻璃的粘性流动实现的,氟云母加入对玻璃粘性流动有阻碍,降低了烧结驱动力.加热至850 ℃,氟云母与玻璃发生反应析晶形成氟闪石,对致密化影响很大.反应析晶发生前,玻璃陶瓷的密度随温度升高和等温时间延长而提高;反应析晶发生后,逐渐形成密集的相互交织的氟闪石晶体骨架对玻璃粘性流动产生严重阻碍,玻璃陶瓷的密度随温度升高略有下降.  相似文献   

13.
The presence of residual carbon in oxides in which the valence state can change during sintering may lead to de‐densification or swelling phenomena during the last stage of sintering. This was demonstrated by sintering a Ce0.85Y0.15O2‐x powder compact with or without added graphite carbon in a reducing atmosphere (Ar/5 vol.% H2) at 1450°C. The shrinkage behavior was studied with a dilatometer combined with an oxygen probe and a gas chromatograph to analyze the composition of the released gases. Oxide reduction during sintering leads to a significant release of oxygen. This oxygen can react with carbon to form gaseous species such as CO. These gases can be released during the second stage of sintering, that is, when the porosity is still open, but they can be trapped in the closing pores during the final stage of sintering. This causes the pressure to increase in the pores, resulting in irreversible swelling, cracking and eventually pellet fracture.  相似文献   

14.
Effect of Pore Distribution on Microstructure Development: I, Matrix Pores   总被引:1,自引:0,他引:1  
A model has been developed to describe the effect of the matrix (first-generation) pore distribution on microstructure development in the final stages of sintering. A model of simultaneous densification and grain growth was used to predict the effects of the number of pores per grain and the pore size distribution on microstructure evolution. Increasing the number of pores per grain was predicted to increase the densification rate, the grain growth rate, and the relative densification rate/grain growth rate ratio. Narrowing the pore size distribution was predicted to inhibit grain growth initially and to increase the densification rate indirectly. Overall, the pore distribution was predicted to have a strong influence on microstructure development and sintering kinetics.  相似文献   

15.
A simple two-dimensional packing model, consisting of arrays of circular particles, was used to calculate the free energy changes associated with the filling of pores of different coordinations with liquid. The calculations were used to determine the equilibrium distributions of a liquid in different packing arrangements of particles. The effect of both the volume fraction of liquid and shrinkage on liquid distribution was examined. It was found that, when liquid redistribution can easily take place, the volume fraction of liquid phase, the pore size distribution of a powder compact, and the amount of densification that has occurred all influence the homogeneity of the distribution of the liquid phase. In addition, the model predicts that, as shrinkage occurs or as the volume fraction of liquid phase increases, the pores will try to fill sequentially in order of increasing size. A consequence of this sequential filling of the pores is that the radius of curvature of the liquid meniscus, and hence the driving force for liquid-phase sintering, changes systematically as shrinkage occurs. The modeling suggests that the driving force for sintering changes in a way that depends on the initial overall pore size distribution of the particle arrangement and the way the pore size distribution changes during sintering.  相似文献   

16.
《Ceramics International》2017,43(11):8195-8201
In our recent work we demonstrated that a bimodal particle size distribution (PSD) AlON powder could be fast densified by pressureless sintering (Shan et al., Ceram. Int. 41 3992–3998 (2015); Shan et al., J. Eur. Ceram. Soc. 36 67–78 (2016)). To obtain a further insight of its fast densification mechanism, this powder was held for 30 min and 60 min at 1500–1700 °C during heating, respectively. However, the added holdings resulted in a decrease in both relative density and transmittance, compared to that of the sample without holding during heating. Further investigation into phase transformation and microstructure evolution of these samples indicates that high heating rate enables the sintering mixtures to keep a near sphere particle shape in bimodal PSD until phase transformation from Al2O3 to AlON is fully completed. Then mass transport between AlON grains of different size can simultaneously happen at the final fast densification stage, which benefits less formation of pores and fast AlON grains growth. Therefore, high heating rate plays a key role to fast and better consolidation of the bimodal AlON powder.  相似文献   

17.
Investigations into the sintering of submicron oxide powders have revealed interesting behavior, particularly insofar as it concerns their microstructural evolution in the early, low temperature transformations during heating. In this work, experiments were conducted on a submicron alumina powder, whose microstructural evolution and densification were characterized after sintering from 900 °C to 1400 °C in air, dry air and high vacuum (10−8 atm). The results indicated that the processing atmosphere strongly influences the particle size distribution at low temperatures before shrinkage occurs. Shrinkage began concomitantly with grain growth and the sintering atmosphere influenced the sintering kinetics. This factor, which is associated with previous narrowing of the particle size distribution, may affect grain growth and densification during the final stage of sintering.  相似文献   

18.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

19.
The densification behavior of fine alumina (mean particle size of ∼0.31 μm) and coarse alumina (mean particle size of ∼4.49 μm) during liquid-phase sintering with additions of talc have been studied, as well as the microstructural evolution. Small amounts (0, 5, and 10 wt%) of talc were added to the fine alumina and coarse alumina, which were sintered at various temperatures for 2 h. When 5 wt% of talc was added to the coarse alumina, densification proceeded rapidly above the liquid-formation temperature in alumina–talc compacts, because of the promotion of a rearrangement process of the solid grains by the liquid phase. The addition of 10 wt% of talc greatly accelerated densification by increasing the volume fraction of liquid. On the other hand, in the fine alumina, which has a higher activity and a greater driving force for sintering, appreciable densification started below the liquid-formation temperature, which prevented further densification after liquid formation. Moreover, the densification was suppressed as the talc content increased. The rigid skeleton of solid grains that was formed by densification below the liquid-formation temperature is believed to have suppressed the rearrangement process of the solid grains, and further densification of the compacts was retarded, even after the formation of a liquid phase above the liquid-formation temperature.  相似文献   

20.
Pore Evolution During Glow Discharge Sintering of Alumina   总被引:1,自引:0,他引:1  
A series of experiments have been performed to demonstrate the applicability of small-angle neutron scattering to the study of pore evolution during sintering. Samples of α-Al2O3 which had been zone sintered in a hydrogen hollow cathode glow discharge to densities exceeding 94% of theoretical were employed in these preliminary measurements. The neutron scattering results indicate that densification during the final stages of glow discharge sintering occurs primarily through a reduction in the number of pores present with only a small change in the average pore size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号