首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
正交旋转回归试验优化木糖醇发酵培养基   总被引:2,自引:2,他引:2  
利用旋转回归法研究热带假丝酵母 (Candidatropicalis)木糖醇发酵的 2个因素 :葡萄糖和酵母膏用量对木糖醇转化率的影响 ,根据木糖醇转化率依葡萄糖和酵母膏用量的回归方程分析表明 ,培养基中添加葡萄糖能提高木糖醇产物转化率 ,而酵母膏对提高产物转化率的作用不显著。研究同时表明 ,添加葡萄糖后能降低培养基中酵母膏的使用量 ,节约成本。根据回归方程寻优得出 :当木糖质量浓度 13 0 g/L时 ,葡萄糖用量 14 2 6g/L ,酵母膏用量3 40 g/L时 ,由木糖生成木糖醇的产物转化率最高  相似文献   

2.
采用响应面法优化木糖醇发酵培养基   总被引:7,自引:4,他引:7  
将Plackett-Burman和响应面设计相结合,对木糖醇发酵培养基进行了优化。结果表明,初始木糖浓度、酵母膏添加量以及MgSO4.7H2O浓度是影响木糖醇转化率的主要因素。优化得到的培养基组成为(g/L)木糖100.7,酵母膏5.302,NaCl6.0,MgSO4.7H2O0.379,KH2PO43,(NH4)2HPO44;通气条件为装液量100mL/250mL。此条件下木糖醇的转化率为0.784g/g。  相似文献   

3.
热带假丝酵母利用酒糟水解液发酵生产木糖醇的初步研究   总被引:5,自引:1,他引:5  
对热带假丝酵母(C.tropicalis)AY91009利用酒糟(丢糟)水解液发酵木糖醇进行了初步研究。结果表明:最佳发酵时间48h,最佳种子龄22h。摇瓶分批发酵工艺条件的最佳组合是:起始pH5.5,接种量15%(v/v),装液量135mL,氮源加入量为10mL含有10g/L酵母膏和20g/L蛋白胨的有机氮源。除水解液本身含有的木糖外,1/10的葡萄糖加入量(w/w)有利于菌体生长和木糖醇的转化,蔗糖则会抑制木糖醇的生成。培养基中添加6g/L的NaCl、3g/L的KH2PO4、0.2g/L的MgSO4.7H2O有利于木糖醇的积累。  相似文献   

4.
本文以木糖为唯一碳源从土壤中筛选得到可以耐受高浓度木糖的菌株,再经过复筛选出一株高产木糖醇的酵母菌株Y-9。经高效液相色谱(HPLC)和红外扫描分析,确定菌株Y-9发酵利用木糖转化得到的主要产物为木糖醇。通过单因素实验、正交试验等手段,对菌株Y-9发酵产木糖醇的培养基组分和发酵条件进行了优化,进一步提高了目的菌株的木糖醇产率和转化率,确定了菌株Y-9摇瓶发酵木糖转化木糖醇的最优培养基和发酵条件。在木糖初始浓度为200 g/L,氮源为酵母膏3.0 g/L,硫酸铵2.0 g/L,玉米浆10.0 mL/L,硫酸镁0.1 g/L,初始pH为6.0,转速为180 r/min,接种量为4%的条件下,菌株Y-9的木糖醇产率为160 g/L左右,木糖醇生成速率为1.67 g/L.h,木糖/木糖醇转化率达到80%以上,是一株具有良好工业化研究开发价值的木糖醇生产菌株。  相似文献   

5.
产木糖醇酵母──耐糖菌株的筛选   总被引:1,自引:0,他引:1  
用分属于 4个属 (Candida、Debaryomyces、Hansenula、Trichosporon)的 14个酵母菌株 ,在两个不同的木糖浓度条件下评价其耐糖性及生成木糖醇的能力。结果表明 ,C .tropicalis的耐糖性及木糖醇转化率普遍优于其它酵母。其中C .tropicalisAs 2 .56 7生成的木糖醇浓度达 138 7g/L  相似文献   

6.
牛肝菌胞外多糖发酵培养基的优化   总被引:3,自引:4,他引:3  
在Plackett Burman设计实验结果基础上 ,采用响应曲面法对影响牛肝菌 (Boletussp .)ACCC 5 0 3 2 8发酵胞外多糖的培养基 5个关键组成成分酵母膏 (X1)、麦芽糖 (X2 )、(NH4 ) 2 SO4(X3)、FeSO4 (X4 )和CuSO4 ·5H2 O(X5)的最佳水平范围进行了研究和探讨。通过对二次多项回归方程求解得知 ,在上述自变量取值分别为 :酵母膏 1 4 .2 g/L ,麦芽糖 2 2 .2g/L ,(NH4 ) 2 SO4 2 .7g/L ,FeSO4 66.9mg/L ,CuSO4 1 0 1 .5 9μg/L时 ,胞外多糖最大预测值为 75 2 .0 79μg/mL(发酵醪 ) ,此预测可信度不仅被统计分析所验证 ,也被实践所证实  相似文献   

7.
以P2培养基为基础组分,分别通过改变初始葡萄糖浓度、初始酵母膏浓度以及初始pH值,研究这3个单因素对丁醇发酵的影响,确定了培养基的较佳条件:初始葡萄糖浓度60g/L、初始酵母膏浓度3g/L、初始pH值6.8.此外,采取接种量5%、发酵温度37℃、发酵时间72h,可使总溶剂浓度(丁醇、丙酮、乙醇)达到13.52g/L,其中丁醇、丙酮、乙醇浓度分别为8.83g/L、3.90g/L和0.79g/L,丁醇比例为65.31%.糖丁醇转化率为21.1%(平均值),糖总溶剂转化率为31.3%(平均值).  相似文献   

8.
苹果酒酵母增殖培养基的优化   总被引:1,自引:0,他引:1  
以麦芽汁装液量(mL)、(NH_4)_2SO_4、Na_2HPO_4和 MgSO_4的质量浓度(g/L)为影响因素,以苹果酒酵母细胞浓度(个/L)为考察指标,利用二次回归正交旋转组合设计研究了1株苹果酒酵母增殖所需培养基的数学模型,进而优化了针对该菌株的增殖培养基。研究结果表明,在100mL 三角瓶中,培养开始酵母细胞浓度为 1.923×10~8个/L,麦芽汁装液量20mL,(NH_4)_2SO_4浓度0.196~1.033g/L,Na_2HPO_4浓度2.559~5.566g/L, MgSO_4浓度1.778~3.222g/L 的培养条件下,培养24h 后,酵母细胞浓度可望高于1.125×10~(11)个/L。  相似文献   

9.
固定化热带假丝酵母发酵氨浸稻秸水解液生产木糖醇   总被引:2,自引:0,他引:2  
采用海藻酸钙固定化热带假丝酵母细胞发酵氨水浸泡稻秸半纤维素水解液生产木糖醇。为了提高木糖醇的转化率,对发酵条件进行了研究。发酵在250 mL锥形瓶中进行。向水解液中补充适量氮源和营养盐等营养物质提高了木糖醇的生产速率,但木糖醇转化率没有因此而提高。适宜的初始pH和细胞干浓度分别为4-5和1.22 g/L。在这些条件下,进行了固定化细胞重复法较高浓缩度水解液的试验。结果发现,固定化细胞能在初始木糖浓度为104.2 g/L的水解液中重复批式发酵5次,木糖醇平均得率和生产速率分别为0.737 g/g和0.533 g/(L.h)。  相似文献   

10.
通过ACA(Chitosan-alginate)微胶囊技术包埋的热带假丝酵母(Candidatropicalis)细胞能有效地发酵酒糟(文中均指丢糟)半纤维素水解液生产木糖醇。在摇瓶条件下,适宜的工艺条件为:初始木糖质量浓度100g/L,发酵液初始pH值6.0,限制性供氧,分段改变摇床转速(0~24h为180r/min,24~48h为120r/min)使菌株在培养早期获得较高水平的通气率,而后降低菌株的呼吸率。每升氮源含酵母膏1.8g,蛋白胨3.0g,微囊化胶珠与水解液体积比为1∶4。此方法有望大幅降低原料预处理的成本,发酵结果良好,显示了良好的应用潜力。  相似文献   

11.
以木糖为底物利用酵母细胞转化生产木糖醇,研究细胞增殖培养基中不同种类的碳源、氮源和微量元素及其添加量对酵母细胞生长和木糖转化率的影响。结果表明,当碳源为木糖和葡萄糖添加量分别为1%时,木糖醇浓度为49.6g/L;当无机氮源为蛋白胨且浓度为2%时,木糖转化时间为60h,木糖醇浓度达到58g/L;微量元素为磷酸二氢钾浓度为0.1%时,木糖的转化时间为48h,此时木糖醇浓度达到59g/L。  相似文献   

12.
该研究采用分子生物学技术构建不依赖异丙基-β-D-硫代半乳糖苷(IPTG)诱导产木糖醇的大肠杆菌(Escherichia coli)工程菌,并研究启动子、质粒拷贝数、诱导剂IPTG的添加、基因xylA和xylB的敲除以及木糖含量对工程菌发酵产木糖醇的影响。结果表明,当转速为200 r/min时,E. coli AI07/pWYZ-1(启动子为lacP)的木糖醇产量是E. coli AI07/pAGI02(启动子为pflB-p6)的1.8倍;E. coli AI07/pWYZ-2(中拷贝质粒pBR322)的木糖醇产量高于E. coli AI07/pWYZ-1(高拷贝质粒pUC19),分别为19.56 g/L、7.90 g/L;是否添加诱导剂IPTG对E. coli AI07/pWYZ-2产木糖醇影响不大,且在发酵96 h时,木糖醇产量极显著高于E. coli AI05/pWYZ-2(P<0.01),其在不添加IPTG的条件下,当木糖初始质量浓度为80 g/L,发酵时间为108 h时,木糖醇产量达48.7 g/L。  相似文献   

13.
将人工合成的树干毕赤酵母(Pichia stipitis)的木糖还原酶基因XYL1插入酿酒酵母(Saccharomyces cerevisiae)表达载体pYES2中,然后将重组质粒pYES2-XYL1导入酿酒酵母INVSc1中,构建转木糖还原酶基因XYL1酿酒酵母菌株INVSc1/pYES2-XYL1,最后采用营养缺陷培养基筛选转木糖还原酶基因酿酒酵母并对其产木糖醇的能力进行检测。结果表明,成功获得2株转木糖还原酶基因XYL1酿酒酵母菌株INVSc1/pYES2-XYL1-01、INVSc1/pYES2-XYL1-02,当两菌株以50 g/L木糖及10 g/L半乳糖为碳源发酵5 d后,木糖醇产量分别高达(13.68±2.37)g/L、(12.09±1.45)g/L,显著高于非转基因酿酒酵母INVSc1的木糖醇产量(1.08±0.37)g/L(P<0.05),说明XYL1基因的导入显著提高了酿酒酵母INVSc1生产木糖醇的能力(P<0.05)。为采用基因工程酿酒酵母制备食用木糖醇提供了理论及技术基础。  相似文献   

14.
Xylitol is a building block for a variety of chemical commodities, besides being widely used as a sugar substitute in the food and pharmaceutical industries. The aim of this work was to develop a microbial process for xylitol production using sugarcane bagasse hydrolysate as substrate. In this context, 218 non-Saccharomyces yeast strains were screened by growth on steam-exploded sugarcane bagasse hydrolysate containing a high concentration of acetic acid (8.0 g/L). Seven new Candida tropicalis strains were selected and identified, and their ability to produce xylitol on hydrolysate at low pH (4.6) under aerobic conditions was evaluated. The most efficient strain, designated C. tropicalis JA2, was capable of producing xylitol with a yield of 0.47 g/g of consumed xylose. To improve xylitol production by C. tropicalis JA2, a series of experimental procedures were employed to optimize pH and temperature conditions, as well as nutrient source, and initial xylose and inoculum concentrations. C. tropicalis JA2 was able to produce 109.5 g/L of xylitol with a yield of 0.86 g/g of consumed xylose, and with a productivity of 2.81 g·L·h, on sugarcane bagasse hydrolysate containing 8.0 g/L acetic acid and177 g/L xylose, supplemented with 2.0 g/L yeast nitrogen base and 4.0 g/L urea. Thus, it was possible to identify a new C. tropicalis strain and to optimize the xylitol production process using sugarcane bagasse hydrolysate as a substrate. The xylitol yield on biomass hydrolysate containing a high concentration of acetic acidobtained in here is among the best reported in the literature.  相似文献   

15.
酵母生物转化合成2-苯乙醇的培养条件优化   总被引:1,自引:1,他引:1  
通过单因素试验和均匀设计试验对酿酒酵母Saccharomyces cerevisiae CWY132生物转化合成2-苯乙醇的培养基组成及培养条件进行优化研究。优化后培养基组成及培养条件为:葡萄糖30.1g/L,KH2PO45g/L,L-苯丙氨酸5.8g/L,MgSO40.5g/L,酵母氮碱0.17g/L;最佳初始pH5~6,接种密度1.21×107/mL,最适培养温度28~30℃,200r/min振荡培养36h。优化后2-苯乙醇产量达到3.98g/L,比优化前的1.9g/L提高了109%。原料L-苯丙氨酸的摩尔转化率从最初的51.4%提高到了92.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号