首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the rutting performance of dense asphalt concretes and the low shear viscosity (LSV) of different asphalt binders was analysed in a previous work. A LSV limit was found for the original asphalt to prevent the rutting of the mixtures, and in addition, a model to predict the rutting performance based on the LSV of the asphalt binder was validated. With the aim of amplifying the criterion previously found, the performances of micro and stone mastic asphalt mixtures are studied in this work. Conventional, multigrade and polymer modified asphalts were used as binders. Considering that the properties of original and aged asphalts must be taken into account for a better asphalt binder characterization, LSV measurements on aged asphalts were also done in order to analyse their relationship to the mixtures rutting performance. The micro and stone mastic asphalt mixtures showed a similar behaviour as the dense grade asphalt concrete in the previous study. Regarding the control of rutting, a LSV limit of 500 Pa.s was found for original asphalts, while 2,000 Pa.s was the limit for aged asphalt binders. The model to predict the rutting performance of asphalt mixtures was amplified, incorporating both original and aged asphalt LSVs as appropriate input data.  相似文献   

2.
The development of new technologies and road pavement materials require the evaluation of the asphalt mixture performance. Rutting is one of the main modes of failure of asphalt mixtures; it is typically studied at the laboratory through the wheel tracking test (WTT). Weather and traffic conditions (temperature, loads) significantly affect the pavement rutting performance. The bitumen rheological properties also have a main role in mixture rutting response; they can adequately characterized by the bitumen Low Shear Viscosity (LSV). The estimation of rutting performance appears as a useful decision tool to optimize pavement design process. This paper studies the rutting performance of asphalts mixtures utilising the WTT. The specimens were tested at different temperatures and loading levels to simulate different climatic and traffic pavement conditions. A performance estimator was developed including temperature and traffic load on the pavement, and LSV of the binder as input data.  相似文献   

3.
温拌剂种类及掺量对不同沥青流变性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究温拌剂种类及掺量对沥青流变性能的影响,通过动态剪切流变仪对分别掺加RH和Evotherm温拌剂的SBS改性沥青和基质沥青进行温度扫描试验,分析了它们的复数剪切模量、相位角和车辙因子。结果表明,Evotherm温拌剂在28~52℃能够提升两种沥青抗车辙性能,52℃后效果减弱;并且在28~40℃间可以提高两种沥青弹性恢复性能,40℃后会使SBS改性沥青弹性恢复性能减弱,对基质沥青无影响。增加Evotherm温拌剂掺量,在28~52℃会使温拌SBS改性沥青抗车辙性能提高,使温拌基质沥青抗车辙性能有所减弱,52℃后影响不明显。RH温拌剂在28~46℃对两种沥青抗车辙性能略有不利,但负面作用随温度升高逐渐减弱甚至消失;RH温拌剂能够显著增大两种沥青高温时弹性恢复性能。RH温拌剂掺量增大会使两种沥青抗车辙性能降低,但会使弹性恢复性能增强。  相似文献   

4.
Warm mix asphalt (WMA) has become very popular in asphalt pavement construction because it allows reducing both energy consumptions and carbon emissions. WMA can be obtained by using different types of additives and can be produced, applied, and compacted at temperatures 20–40 °C lower than hot mix asphalt. WMA additives allow reducing the working temperatures without compromising the final performance of the asphalt concrete. Many WMA additives are available on the worldwide market and some of them reduce the viscosity of asphalts binder (organic additives or foam) whereas others do not act on this sense (chemical additives). This study focuses on the effect of chemical additives on the performance of asphalt binders for WMA production. To this purpose, a neat bitumen, a polymer modified bitumen (PMB) and two different chemical additives were selected. All the binders were characterized through conventional tests, DSR, MSCR, FTIR and microscopic analysis. The result clearly showed that the influence of the chemical additives on the neat bitumen is negligible or non-existent. On the contrary, significant changes were observed in the modified bitumen properties. Specifically, chemical additives reduce the viscosity temperature susceptibility of PMBs in the temperature range between 80 and 140 °C, increase the rutting resistance potential and the elastic response of PMBs at high temperatures. Moreover, a morphological inspection supported the modifications observed in the rheological properties of PMBs.  相似文献   

5.
为了评价高黏改性剂对沥青性能的影响,采用高速剪切法制备了苯乙烯-丁二烯嵌段共聚物(SBS)改性沥青、废橡胶粉改性沥青和两种SBS/橡胶粉复合改性高黏沥青。通过三大指标试验、黏度试验、高温车辙试验和低温小梁弯曲试验,研究了高黏沥青的高低温性能、感温性能及沥青混合料路用性能。结果表明:4种改性沥青的高低温性能随各自改性剂掺量的增加逐渐提高,掺加10%北美岩沥青或2.5%多聚磷酸(PPA)的高黏沥青感温性能更稳定,较大幅度提升了黏度值,高温性能改善明显;掺加2.5%PPA的高黏沥青及其混合料能够更好地抵抗高温条件下的性能衰减,保证了使用效果,更适用于温度较高地区;掺加10%北美岩沥青的高黏沥青及其混合料在低温条件下性能良好,推荐在低温地区使用。  相似文献   

6.
采用黏度试验和动态剪切流变试验研究了反应性弹性体三元共聚物(RET)对基质沥青与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青性能的影响,通过原子力显微镜(AFM)分析了SBS改性沥青和RET-SBS改性沥青的表面形貌特征,并采用车辙试验、低温弯曲试验、弯曲疲劳试验及加速加载试验评价了RET改性沥青混合料的各项技术性能,最后通过Weibull分布,分析了不同RET改性沥青混合料在不同失效概率下的疲劳性能。结果表明:RET的掺入提高了沥青的黏度和抗车辙因子,对沥青的高温性能有较大改善;通过掺入RET-SBS,增加了改性沥青中的黏性成分;相较于SBS改性沥青,RET-SBS改性沥青的表面粗糙度显著增大;RET改性剂能够明显改善沥青混合料的高温稳定性;RET与SBS改性剂复配,可有效弥补RET对沥青混合料低温性能的不足,明显改善沥青混合料的疲劳性能和高温长期稳定性。  相似文献   

7.
The amount of solid plastic waste generated from material packages like plastic bottle and similar utilities within the kingdom of Saudi Arabia has skyrocketed. This is as a result of the increased level of industrial packaging due to rapid industrialisation and fast urbanisation in the country. The associated cost of managing these solid wastes has also multiplied as the task become difficult and enormous. The effect of polypropylene, high- and low-density polyethylene (PP, HDPE and LDPE)-recycled plastic wastes (RPW) on the viscoelastic performance of the local asphalt binder has been investigated. The recycled plastics were obtained by shredding and grounding the RPW to a desirable size for easier blending with the asphalt binder. All the RPWs result in an improved rutting performance. The RPW-modified asphalts upper PG limit increase by at least one level for each 2% increase in the RPW content, in most cases. An increase of 55, 19 and 9% in resilient modulus (MR) was observed for PP-, HDPE- and LDPE-produced asphalt concrete (AC), respectively. Correlation between the MR of the AC and non-recoverable creep compliance (Jnr) of the asphalt binder was established. The obtained viscoelastic properties of the RPW-modified binder was utilised to model a typical pavement section using AASHTO mechanistic empirical pavement design guide (ME-PDG) software. The predicted distresses of the modelled pavement shows significant rutting and fatigue performance improvement for pavement produced with the RPW. Elastomeric type of polymer is required to supplement these RPW to enable them meet the AASHTO TP 70 elastic recovery requirement.  相似文献   

8.
The influence of adding four types of commercial wax and one polyphosphoric acid to a non-waxy bitumen was investigated with regard to binder and asphalt concrete mixture performance. Binder properties were determined using dynamic shear rheometer (DSR), bending beam rheometer, force ductilometer and various conventional test methods. Asphalt concrete performance was investigated using tensile stress restrained specimen test (TSRST), creep test at −25,˚C, dynamic creep test at 40,˚C and complex modulus test at 0, 10 and 20,˚C. Totally eleven binders and eight asphalt mixtures were investigated. TSRST fracture temperatures of the asphalt mixtures were marginally influenced by the addition of any of the additives, and significant physical hardening of the binders, observed by BBR testing, could not be established using TSRST. Also in creep testing of asphalt mixtures at −25,˚C, recorded effects were less pronounced compared to binder testing. In dynamic creep testing, the smallest permanent strains were recorded for the asphalt mixtures containing FT-paraffin or montan wax, indicating better resistance to rutting. Adding polyethylene wax or polyphosphoric acid to the non-waxy bitumen used, showed considerable positive stiffening effects on the binder at medium and higher temperatures. However, this increase in stiffness could not be shown in dynamic creep testing (at 40,˚C) of asphalt concrete mixtures containing these additives.  相似文献   

9.
The ductilometer is currently being used by the asphalt pavement community for determination of elastic recovery of asphalt materials. Briquet specimens are pulled apart at 5 cm/min, held after a specified elongation, then severed at the center and allowed to recover undisturbed for 1 h with the idea of getting a measure of the ability of the asphalt material to recover after imposing a deformation. Materials with poor ability to recover are known to lend themselves to permanent deformation resulting in rutting of pavements. The Superpave specification parameter |G*|/sinδ recommended by the Strategic Highway Research Program was found not to relate well with observed rutting of mixtures that used polymer-modified asphalts with increased elastic behavior. This led researchers to seek methods to refine this parameter. While refinement efforts have been ongoing, there has been an inclination on the part of a number of State Departments of Transportation to use the elastic recovery test to complement the Superpave specification tests. However, the elastic recovery test is truly not very elegant and accurate, and often fails to discriminate between the behaviors of differently modified binders. The present work suggests a dynamic oscillatory test using the dynamic shear rheometer DSR that would fulfill the objectives of the elastic recovery test. The elastic recovery term and the condition under which it is determined from DSR data are selected by observation of master plots of a wide variety of asphalt binders. The criterion is developed by observing the ability of the selected term in best discriminating asphalt binders for their elastic recovery behavior. It is recommended that the term cosδ determined at a temperature T = 82°C and frequency ω = 1 radian/s be used to assess the elastic recovery of asphalt materials. Cosδ (T = 82°C, ω = 1) > 0.04 is recommended as the criterion for acceptance of required elastic recovery behavior. The opinions, findings, and conclusions expressed in this document are those of the author only and not necessarily of the Federal Highway Administration or any other researcher at the Turner-Fairbank Highway Research Center.  相似文献   

10.
基于流变学理论研究橡胶粉与不同来源基质沥青的配伍性,采用动态剪切流变仪(DSR)分别对不同基质沥青加工而成的橡胶沥青进行应变扫描、温度扫描、频率扫描等常规动态剪切流变试验,从相位角、复合模量和车辙因子等指标评价橡胶沥青黏弹特性,定性区分沥青四组分对橡胶沥青黏弹特性的影响,并对橡胶沥青进行滞回环试验,运用灰色关联数学分析方法定量给出沥青四组分对橡胶沥青的残余变形、弹性贮能、耗散能、弹性比例和复合弹性模量等指标的影响。结果表明:流变学理论是研究橡胶粉改性剂与基质沥青配伍性的有效方法;从能量角度评价沥青四组分对橡胶沥青黏弹特性指标的影响,沥青质对橡胶沥青残余应变影响较大;胶质组分对橡胶沥青弹性贮能和耗散能影响最大,而芳香分影响最小;沥青质组分对橡胶沥青弹性比例参数影响最大;芳香分含量可以提高橡胶沥青复合模量。  相似文献   

11.
The interaction characteristics of cement asphalt composite mastic (CAM) and performance properties of cement asphalt emulsion mixtures (CAEM) were evaluated in this work using chemical and mechanical test methods to investigate the effect of the presence of cement on asphalt emulsion mixtures (AEM). The chemical composition of the CAM was obtained through use of X-ray diffraction, Fourier-transform infrared spectroscopy, and environmental scanning electron microscopy (ESEM) as a means to describe the interactions between the cement and asphalt in the composite materials. Test results demonstrated that cement can hydrate with the water phase of the asphalt emulsion. Asphalt droplets can simultaneously enclose cement particles and delay the hydration reaction process of cement. The interaction mechanism of cement particles or hydration products and residual asphalt is a physical compound process. The influence of these findings on asphalt emulsion mixture design and performance properties was assessed using varying mix design components and conducting laboratory-based mechanical test methods for rutting resistance and moisture susceptibility. Mix design components varied including added water content, emulsion content, and cement dosage levels. The optimum fluids content was determined based on the dry indirect tensile strength. It was found that the cement content significantly impacts the optimum fluids content for both added water and emulsion. Furthermore, the presence of cement improves the dry tensile strength, rutting resistance, and moisture susceptibility. Based on microstructural analysis of CAM and CAEM, the mechanism by which cement improves the performance of AEM is attributed to the ability of hydration products to increase both the stiffness of the asphalt binder and the adhesion at the mastic–aggregate interface. In practical applications, this study recommends a mix design method for cement-modified asphalt emulsion mixes (CAEM) based on selection of optimum cement and emulsion contents using indirect tensile strength and verification of the design through evaluation of the moisture susceptibility and rutting resistance of the CAEM mix. Threshold values of CAEM mix mechanical properties to determine the quality of the design are proposed.  相似文献   

12.
Permanent deformation or “rutting” is a common mode of failure in asphalt pavements. In order to better determine why rutting occurs, current research is focussed on the rheological properties of the asphalt binder. Zero shear viscosity (ZSV) seems to adequately explain how the asphalt binder contributes to the rutting behaviour of the pavement. Still, the measurement of ZSV in a reliable and reproducible way is an open field of discussion. This work looks into the repeatability, benefits and duration of two test methods to measure ZSV: the creep test and frequency sweep test. To account for the influence of the asphalt type, six different conventional and modified asphalts were tested. A statistical analysis was performed to study the variability of each test method and a comparison between both was made.  相似文献   

13.
Fatigue crack growth in asphalt and asphalt-interfaces   总被引:1,自引:0,他引:1  
Fatigue cracking due to traffic load is a major factor in road damage. Therefore, durability and lifetime prediction of roads plays a substantial role for road maintenance and cost planning. This paper reports a study of fatigue crack performance of solid asphalt and asphalt–asphalt interfaces by means of the wedge-splitting test. Instead of beams and the three- or four-point bending test, the wedge splitting method was used for the first time to observe crack growth on bituminous drilling cores. Samples of solid asphalt and samples with asphalt-interfaces were tested. One group of asphalt interfaces was untreated and the other was sandblasted before spreading the top layer during manufacturing. Due to the temperature dependency of material properties of asphalt, the tests were performed in a compact climate chamber at −10°, 0° and +10 °C. The challenge of determining the crack length and the crack tip were detected with an optical measurement system and picture analysis after testing. The results prove that the wedge splitting method is a highly practicable and repeatable method for crack growth testing of bituminous materials.  相似文献   

14.
In the United States, mechanical foaming is the most popular method for producing warm mix asphalt, which is the latest technology implemented to reduce the production temperature and/or enhance the compactability of asphalt mixtures. Three commonly used commercially available laboratory foamers to produce asphalt foams include the Wirtgen WLB 10S (Wirtgen foamer), the InstroTek Accufoamer (InstroTek foamer) and the Pavement Technology Inc. Foamer (PTI foamer). Though these foamers have been widely used in research studies and construction practice, it is still unknown whether they produce asphalt foams with the same quality and quantity. In this study, asphalt foaming characteristics produced by these three laboratory foamers were measured using a non-contact test set-up consisting of a laser device and a digital camera, and compared in terms of instantaneous volume expansion, foam stability and surface area evolution of foam bubbles. Additionally, the workability, coatability and mechanical performance of foamed mixtures prepared using these same laboratory foamers were compared against the conventional hot mix asphalt (HMA). Test results indicated that foamed asphalts produced by the Wirtgen foamer had the largest volume expansion and greatest foam stability, followed by those produced by the InstroTek foamer and the PTI foamer. The optimum foaming water content (Wopt) was determined for each laboratory foamer based on the workability and coatability results of the corresponding foamed mixtures. In addition, the performance evaluation of the foamed mixtures produced at Wopt values indicated equivalent mixture stiffness but greater moisture susceptibility as compared to the conventional HMA.  相似文献   

15.
Gradation-based framework for asphalt mixture   总被引:1,自引:0,他引:1  
Aggregates are the major component of asphalt mixtures, greatly influencing the mixtures resistance to failure. The structure that is formed by the aggregates will depend mostly on the size distribution, shape and mineral composition. Coarse aggregate have a strong influence on the resistance to rutting, while fines provide stability to the mixture. In the present study a generalized framework is developed to identify the range of aggregate sizes which form the load carrying structure in hot mix asphalt and determine its quality. The method has been developed as a numerical procedure based on packing theory. Parameters like porosity and coordination number have been used to evaluate the quality of the load carrying structure and relate it to resistance to rutting. The framework has been evaluated on several field and laboratory mixtures and related to their rutting performance. The gradation analysis of the mixtures has compared favorably with the performances reported from the field and laboratory testing. The developed gradation analysis framework has proven to be a tool to identify those mixtures with a poor rutting performance based on the gradation of the aggregates.  相似文献   

16.
Rutting is considered as one of the major damages in asphalt mixtures. In this study, different types of nanoparticles such as TiO2, Al2O3, Fe2O3 and ZnO in different percentages were added to the base asphalt binder in order to decrease the rutting potential of hot-mix asphalt (HMA). In the first step, asphalt binder tests for characteristics such as penetration grade, ductility, softening point and viscosity were performed on the asphalt binder modified by the nanoparticles. Then, after preparing HMA samples, the static creep test was done at two stress levels at a specific temperature. Results of this study showed that using the nanoparticles improved the behavioural properties of the asphalt binder and decreased rutting in asphalt mix samples. Furthermore, scanning electron microscope images taken from the asphalt binder samples modified by the nanoparticles demonstrated that these nanoparticles were properly distributed in the asphalt binder space and had a positive effect on the rutting performance of the asphalt mixes.  相似文献   

17.
Startup flow of asphalt modified by styrene-butadiene-styrene and ethylene-vinyl acetate copolymer is studied at temperature T=60°C. It is shown that the base asphalt and blends with a low content of polymer (2% by weight) behave as linear viscoelastic materials. With increasing concentrations of polymer, the behaviour of the studied blends is nonlinear and can be described by the generalized rubber-like constitutive equation with separable memory function. The startup flow test seems to be ideal for the characterization of polymer modified asphalts in large deformation.
Résumé Les courants de départ des bitumineux modifiés par styrène-butadiène-styrène et ethylène-vinylacétate co-polymères sont étudiés à des températures T=60°C. Il est montré que le bitumineux de base et les mélanges de bas contenu de polymères (2% par poids) se comportent comme un matériel linéaire viscoélastique. Avec une concentration croissante de polymère, le comportement des mélanges étudiés est nonlinéaire et peut être décrit par l’équation généralisée de constitution de type caoutchouc avec une fonction de mémoire séparable. Les essais de courants de départ semblent idéaux pour la caractérisation des bitumineux modifiées par polymère de grande déformation.


Editorial note Prof. Ludo Zanzotto is a RILEM Senior Member. He participates in RILEM TC 182-PEB ‘Performance testing and evaluation of bituminous materials’.  相似文献   

18.
Abstract

Coloured micro-surfacing technology has become increasingly popular in pavement construction because of its economic benefit and ability to accept traffic quickly. The main goal of this study was to produce a clear asphalt with superior performance that can be easily emulsified. Two types of resin that are easy to emulsify and one kind of extract oil were used to synthesise the clear asphalt. The clear asphalt was mixed with a styrene butadiene styrene (SBS) modifier at different proportions using a mechanical agitator. The physical properties of the samples were determined via conventional bitumen tests and the optimum formula was obtained by changing the mixture ratio through orthogonal experimentation. The thin-film oven test evaluated the ageing property of the clear asphalt. The surface energy components corresponding to the advancing process and the receding process were determined using the Wilhelmy plate method. The surface free energy (SFE) of the aggregates was measured with a gravimetric sorption analyser. The adhesive bond energies between asphalt samples and aggregates were calculated using their SFE components to evaluate their properties of fracture and healing. Results show that depending on the amount and type of resin added, different synthetic clear asphalts can be obtained. Further, the clear asphalt mixed with SBS is capable of synthesising better properties at high or low temperature. The clear asphalt with aggregates had fracture and healing properties similar to common base asphalt.  相似文献   

19.
李超  王岚 《复合材料学报》2018,35(8):2149-2157
采用四点小梁弯曲疲劳试验方法,考虑不同试验温度和不同应变水平等因素的影响,研究多聚磷酸(PPA)-苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)复合改性沥青混合料疲劳性能的变化规律,并与SBS改性沥青混合料进行对比。结果表明:相同条件下,PPA-SBS改性沥青混合料比SBS改性沥青混合料残留劲度模量比大,损伤因子小,稳定阶段耗散能变化率的平均值小,疲劳损伤演变小,抗疲劳性能好;同一温度下,应变水平越大,残留劲度模量比越小,损伤因子越大,耗散能变化率维持稳定阶段的平均值越大,疲劳损伤演变越剧烈,抗疲劳性能越差;同一应变水平下,15℃时沥青混合料试件的抗疲劳性能优于10℃时。  相似文献   

20.
为了研究复合纤维沥青混合料在高温持续荷载作用下的稳定性,根据工程中常用纤维和已有研究成果,选用了三种复合纤维,对沥青混合料的变形发展规律及内部空隙结构特征开展试验研究。首先采用加速加载试验,对不掺加纤维和掺加复合纤维的沥青混合料在高温持续荷载作用下的横断面变化和车辙深度进行分析;再利用X-CT扫描技术与VG软件三维重构功能,研究不同纤维沥青混合料的空隙组成及形态特征演变规律。结果表明:高温持续荷载作用下,掺加纤维混合料横断面变形呈现"W"字型,不同纤维在沥青混合料中发挥"加筋"、"增黏"、"吸油"的协同作用,能显著减小沥青混合料的流动变形,且掺加复合纤维III的混合料流动变形最小;掺加不同复合纤维的沥青混合料可采用y=a-b·ln(x+c)进行车辙深度预估。加速加载试验后,掺加三种复合纤维的沥青混合料空隙率最大仅增加7%,分形维数仅降低不到0.5%,表明掺加三种复合纤维基本不改变沥青混合料的空隙结构特征,而且在高温持续荷载作用下,可较好地保持沥青混合料内部空隙的三维形态特征,进而改善沥青混合料的抗变形能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号