首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of wide applications of welded structures in different industries, using design codes and standards such as IIW recommendations is known as a safe and common method to design welded joints. The weld geometry and thickness of welded joint are the most important parameters that affect the fatigue strength of welded joints. In the present study, the fatigue behaviour of thin Al5456 butt‐welded joints has been investigated, and the effect of thickness on fatigue strength has been evaluated. Contrary to the above‐mentioned recommendations about thin welded joints, it was shown that the thickness of welded joints affects the fatigue strength. Moreover, the fatigue test results have been compared with the IIW design recommendations for three well‐known approaches in order to analyse the reliability of the codes. According to the design stress‐life diagrams, it was found that in some cases, the fatigue strength has much larger values than the IIW predictions, and IIW‐based design causes an over conservative design. While in some other cases, the fatigue strength is lower than IIW recommendations, and it leads to a non‐conservative design. Based on the experimental results, the new values for slope of S‐N curve and FAT have been proposed in order to improve the design diagrams.  相似文献   

2.
Welded assemblies are commonly used in the shipbuilding industry. Because of the combination of stress concentration and cyclic loading, welded joints could be a critical area for fatigue damage. Thus, knowing stress and strain histories at the critical points of the structure is necessary, particularly when a confined plasticity occurs, to determine the fatigue life of welded assemblies. To avoid time‐consuming nonlinear finite element analyses (FEA), simplified estimation methods of the elastic–plastic strain/stress can be used. In a previous work, an approach to estimate stress state at critical points was developed and employed in the case of double‐notched specimens. The present paper focuses on welded joints in order to validate this strategy with the aim to estimate the fatigue crack initiation life of T‐joints. To go further, a parametric approach has been adopted to take into account the local geometries of welded joints and to determine the constraint operator without any FEA. The results predicted by this approach are compared with experimental fatigue results.  相似文献   

3.
This paper aims at proposing a new fatigue life estimation model that is preferably adapted to welded joints subjected to multiaxial loading. First, a mesh‐size insensitive structural stress is defined that enables to characterize the stress concentration effect appropriately. Second, the multiaxial stress state and loading path influence are taken into account in the lifetime prediction model by adopting a suitable critical plane method, originally proposed by Carpinteri and co‐authors. Experimental verification is conducted for a given welded joint geometry under different loading conditions, including uniaxial, torsional and multiaxial loads. The reliability and effectiveness of the new method are validated through substantive fatigue testing data.  相似文献   

4.
The fatigue threshold and high growth rate region properties were investigated on several kinds of welded joints. These properties became unique in spite of the variation of steels (ferrite-pearite, martensite, austenite), welding method, heat input and stress ratio. It was revealed that the unique properties occurred from the fully opened fatigue crack due to the tensile residual stresses. Based on these results, the equation of the fatigue crack growth curve for the design and inspection of welded structures was proposed. It is also suggested that the inducement of compressive residual stress at the fatigue critical zone is effective in improving the fatigue properties of welded structures.  相似文献   

5.
In this paper, the influence of the residual stress on the fatigue performance of a welded structure under multiaxial loading modes is studied. First, the local stress state at weld toe is modified via introduction of the residual stress, and a new fatigue life estimation model considering the effect of the residual stress is established by modifying our recently proposed critical plane method. Second, the basic theory and procedure of the finite element simulation on the calculation of the welding residual stress are presented. Finally, a numerical simulation of an aluminum alloy flange‐to‐tube welding process is conducted, and the calculated residual stress is verified with X‐ray diffraction measurement. Furthermore, the performance of the proposed fatigue life estimation model is verified by the experimental data obtained in the fatigue test under different loading modes. It confirms that the consideration of the residual stress is important, especially under the out‐of‐phase loading mode.  相似文献   

6.
In this research, the effects of torque tightening on the fatigue strength of 2024-T3 aluminium alloy double lap bolted joints have been studied via experimental and multiaxial fatigue analysis. To do so, three sets of the specimens were prepared and each subjected to different levels of torque i.e. 1, 2.5 and 5 N m and then fatigue tests were carried out at various cyclic longitudinal load levels. A non-linear finite element ANSYS code was used to obtain stress and strain distribution in the joint plates due to torque tightening of bolt and longitudinal applied loads. Fatigue lives of the specimens were estimated with six different multiaxial fatigue criteria by means of local stress and strain distribution obtained from finite element analysis. Multiaxial fatigue analysis and experimental results revealed that the fatigue life of double lap bolted joints were improved by increasing the clamping force due to compressive stresses which appeared around the hole.  相似文献   

7.
In the Notch Stress Intensity Factor (N‐SIF) approach the weld toe region is modelled as a sharp V‐shaped corner and local stress distributions in planar problems can be expressed in closed form on the basis of the relevant mode I and mode II N‐SIFs. Initially thought of as parameters suitable for quantifying only the crack initiation life, N‐SIFs were shown able to predict also the total fatigue life, at least when a large part of the life is spent as in the propagation of small cracks in the highly stressed region close to the notch tip. While the assumption of a welded toe radius equal to zero seems to be reasonable in many cases of practical interest, it is well known that some welding procedures are able to assure the presence of a mean value of the weld toe radius substantially different from zero. Under such conditions any N‐SIF‐based prediction is expected to underestimate the fatigue life. In order to investigate the degree of conservatism, a total of 128 fillet welded specimens are re‐analysed in the present work by using an energy‐based N‐SIF approach. The local weld toe geometry, characterised by its angle and radius, has been measured with accuracy for the actual test series. The aim of the work is to determine if the N‐SIF‐based model is capable of taking into account the large variability of the toe angle, and to quantify the inaccuracy in the predictions due to the simplification of setting the toe radius equal to zero.  相似文献   

8.
Reliability updating of welded joints damaged by fatigue   总被引:1,自引:0,他引:1  
The paper introduces a probability-based fatigue assessment model for welded joints in steel bridges. The approach is based on a modelization of the fatigue phenomenon issued from the principles of fracture mechanics theory. The safety margin includes the crack growth propagation and allows us to treat fatigue damage in a general manner. Damaging cycles and non-damaging cycles are distinguished. The reliability calculus is performed by a FORM technique. The sensitivity study of the different parameters shows that some variables can be taken as deterministic. Applications are made on a welded joint ‘bottom plate/stiffener’ of a typical steel bridge. The model is then used for taking into account inspection results. A sensitivity analysis of different non-destructive inspection (NDI) methods is carried out for measuring their uncertainty levels. The different types of inspection results (no detection, detection with no measurement, detection with measurement) are analysed and a general methodology for updating reliability levels is given. The results show their ability to be inserted in a maintenance strategy for optimizing the next inspection time, the need to repair or to replace the joint, and, the eventual possibility of no action.  相似文献   

9.
10.
Accurate measurement of short (<1 mm depth) elliptical fatigue cracks that grow from the toes of fillet welds has proved to be an obstacle to the application of fracture mechanics principles to welding fatigue. This paper reports a DC potential drop technique which allows continuous measurement of the depth of such elliptical cracks. A delicate compromise between sensitivity and accuracy, combined with superior electrical stability displayed by the measurement apparatus, has allowed detection of: 1 — crack growth less than 0.01 mm and; 2 — crack growth rates less than 10?7 mm/cycle for cracks less than 1 mm deep.Preliminary results have indicated the relative importance of stress ratio, defect size and material variation on the growth of these short elliptical cracks. When the weld toe is subject to high stress ratios the phenomenon may be considered propagation dominated whereas low stress levels increase the influence of threshold and initiation mechanisms.  相似文献   

11.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

12.
Welded structures, such as welded pressure vessel components subjected to multiaxial cyclic loading, are particularly susceptible to fatigue damage. In this paper, a new path-length-based effective stress range is proposed to assess the fatigue life of weld joints under multiaxial fatigue loading. The path-length measure, a function of both normal and shear components on a critical crack plane, has a solid root in classic fracture mechanics and its application is validated by correlating nominal fatigue data including pure-bending, pure-torsion, in-phase, and out-of-phase loading. Path-Dependent Maximum Range (PDMR), a unique general-purpose fatigue life assessment package for multiaxial variable-amplitude loading, is introduced in this paper. Finally, the application of PDMR to multiaxial fatigue life assessment of complex loading cases is also discussed.  相似文献   

13.
Current fatigue design methods for assessing welded steel structures under complex combined or multiaxial loading are known to be potentially unsafe. This has led to a number of research projects over the past 10 years. Some progress has been made in developing better methods, but they are not yet suitable for general design. This paper presents an interim solution based on a review and analysis of relevant published data; all referring to fatigue failure from a fillet weld toe. These indicate that Eurocode 3/IIW S – N curve FAT80/3 (negative inverse slope of 3) is suitable for combined normal and shear stresses acting in phase, and possibly for out-of-phase (i.e. non-proportional loading) bending and shear if the shear stress is not due to torsion. However, a shallower curve FAT80/5 is necessary for out-of-phase torsion and bending or tension. Both curves are used in conjunction with the nominal maximum principal stress range occurring during the loading cycle.  相似文献   

14.
Mean stress effects in steel weldments were examined under both constant and random narrowband amplitude fatigue loadings. The purpose of these tests was to provide experimental data with which to substantiate the use of analytical expressions to account for mean stress effects. Fatigue tests were performed under both tensile and compressive mean stress levels. Test results indicate agreement with the modified Goodman equation to be favorable in accounting for the effect of tensile mean stresses on fatigue life. However, test results from high fatigue loadings (maximum stresses nominally above half ultimate) were found to possess better agreement with the Gerber formulation than with the modified Goodman one. Behavior under compressive mean stresses indicated a linear correction relationship was required, which was less conservative than any of the relationships considered. Test results obtained under random amplitude fatigue loadings exhibited trends similar to those observed under constant amplitude loadings. This finding, along with supporting analysis, indicates that the same correction relationship can be used in the same manner for both constant amplitude and random (narrowband) amplitude loadings.  相似文献   

15.
In this paper, the modified Wöhler curve method proposed by Susmel and Lazzarin is employed to predict the fatigue life of welded connections subjected to biaxial cyclic loading. This criterion is reformulated here in order not to take into account the mean stress effect, as suggested by several design codes (at least when welded connections are not completely stress relieved). The accuracy of the proposed method in fatigue lifetime estimation was evaluated by using a number of data sets taken from the literature. The modified Wöhler curve method was applied in terms of nominal stresses and was calibrated using the uniaxial and torsional fatigue curve determined by reanalysing the experimental data, as well as using the standard fatigue curves of the Eurocode 3. The proposed approach was seen to be successful, giving multiaxial fatigue life predictions located within the widest scatter band related either to uniaxial or to torsional data, independently of both out‐of‐phase angle and load ratio value. Finally, the accuracy of the modified Wöhler curve method was compared to the one obtained by applying the procedure suggested by the Eurocode 3: the proposed criterion is demonstrated to be much more accurate and reliable than the standard one.  相似文献   

16.
To better understand the crack closure and propagation, an analytical model is established. The residual stress effect on fatigue crack growth equations has been considered using the residual stress intensity factor (SIF) (Kres). The joint geometries, residual stress distributions (σres) and residual stress ratio (Rres) were considered also. Kres are calculated using the analytical weight function (WF) method and different residual stress distributions. It is to be emphasized that the current approach is little investigated. This is because the WF has already been developed to calculate SIF for an existing crack. The current approach calculates Kres for the crack that initiates and propagates until failure. Different stress distributions have been used, and Rres is defined. The validity of using the WF has been shown. SIF due to applied load (Kapp) and applied stress ratio (Rapp) have been considered. Fatigue crack growth rate was investigated in accordance with the current approach. The results have been verified and benchmarked.  相似文献   

17.
Full penetration T butt weld joints between a tube and its flange are considered, subjected to pure bending, pure torsion and a combination of these loading modes. The model treats the weld toe like a sharp V‐notch, in which mode I and mode III stress distributions are combined to give an equivalent notch stress intensity factor (N‐SIF) and assess the high cycle fatigue strength of the welded joints. The N‐SIF‐based approach is then extended to low/medium cycle fatigue, considering fatigue curves for pure bending and pure torsion having the same slope or, alternatively, different slopes. The expression for the equivalent N‐SIF is justified on the basis of the variation of the deviatoric strain energy in a small volume of material surrounding the weld toe. The energy is averaged in a critical volume of radius RC and given in closed form as a function of the mode I and mode III N‐SIFs. The value of RC is explicitly referred to high cycle fatigue conditions, the material being modelled as isotropic and linear elastic. RC is thought of as a material property, independent in principle of the nominal load ratio. To validate the proposal, several experimental data taken from the literature are re‐analysed. Such data were obtained by testing under pure bending, pure torsion and combined bending and torsion, welded joints made of fine‐grained Fe E 460 steel and of age‐hardened AlSi1MgMn aluminium alloy. Under high cycle fatigue conditions the critical radius RC was found to be close to 0.40 mm for welded joints made of Fe E 460 steel and close to 0.10 mm for those made of AlSi1MgMn alloy. Under low/medium cycle fatigue, the expression for energy has been modified by using directly the experimental slopes of the pure bending and pure torsion fatigue curves.  相似文献   

18.
Low cycle fatigue (LCF) and creep fatigue interaction (CFI) behaviour of P92 steel welded joint were investigated experimentally and numerically. Strain‐controlled LCF tests at different strain amplitudes and CFI tests at different peak strain holding time were conducted. Evolutions of cyclic stress response, mean stress, and creep strain during cycling were described, in which the influence of strain amplitude and holding time were investigated. A specific heat treatment process was proposed to get the homogenous simulated material of fine grain region and coarse grain region in the heat affected zone. Material parameters of parent material, fine grain heat affected zone, coarse grain heat affected zone, and weld metal in the unified viscoplasticity model were then determined and validated. To predict the LCF and CFI behaviour of welded joint, 3‐dimensional unified viscoplasticity model with a modified isotropic variable was compiled into ABAQUS UMAT. The comparison between the predicted and experimental result under LCF and CFI loadings showed that the simulation results were reasonable and agreed with the experimental data well.  相似文献   

19.
An approach is presented, based on the weight function method to calculate the stress intensity factors of semielliptical surface cracks originating from the notch root of welded joints. The stress distribution along the potential crack plane required in the weight function method is constructed on the basis of the notch stress intensity factor approach in the highly stressed zone and of the equivalent linearized stress distribution and is compared with those determined by the finite element method and existing predictions. The stress intensity factors determined by the proposed approach are compared with available solutions. These comparisons show that the results determined by the proposed approach generally agree well with the existing solutions. For the cases where the agreement is poor, the reasons are identified. One important feature of the proposed approach is that the stress singularity at sharp notch tip can be considered, which cannot be appropriately simulated by the finite element method. Finally, to demonstrate the applicability of the proposed approach, the fatigue life and the fatigue crack shape evolution of welded joints are predicted and they are compared with experimental results.  相似文献   

20.
We have determined theoretical notch coefficients with use of the fictitious radius in tube-tube and flange-tube welds. The parameter of normal and shear strain energy density in critical planes is applied for estimation of fatigue life under cyclic conditions of pure bending, pure torsion and combined proportional bending with torsion. The critical planes were determined with use of two methods based on the maximum parameters of, respectively, normal and shear strain energy density. __________ Translated from Problemy Prochnosti, No. 4, pp. 118–124, July–August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号