首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
(SiCW+B4Cp)/MB15 Mg基复合材料的微观结构   总被引:3,自引:0,他引:3  
陈玉喜  李斗星  张国定 《金属学报》2000,36(11):1229-1232
利用高分辨电镜研究了(SiCw+B4Cp)/MB15 Mg合金基复合材料的微观结构.SiC晶须的表面附着呈截角八面体形状的MgO纳米颗粒.此外,MgB2和MgO共生在SiC晶须的表面,三者之间存在固定的晶体学取向关系[110]SiC∥[110]MgO∥[1120]MgB2和(111SiC∥(111MgO∥(0001MgB2.MgB2相呈六角盘状几何外形,在Mg合金中其界面能的各向异性显著.此外,还发现了SiC和Mg存在的一种晶体学取向关系[111]siC∥[0001]Mg和(202)siC∥(1120)Mg.研究结果表明,在Mg合金复合材料中,SiC比B4C更加稳定.  相似文献   

2.
B4C/Al复合材料是目前最理想的中子吸收材料,但工业上常用的液态搅拌法制备过程中存在着界面润湿性差的问题。本文结合实验及第一性原理的方法,通过研究Al(111)/AlB2(0001)和Al(111)/TiB2(0001)界面的结构来分析工业上添加过渡元素Ti对B4C/Al界面润湿性的改善机制。通过计算发现,Al(111)/TiB2(0001)界面相对Al(111)/AlB2(0001)界面具有更高的粘附功值,说明其界面结合更强。进一步对比Ti掺杂二硼化物和AlB2的偏态密度结构,发现Ti掺杂体具有较低的反键态,表明Ti-3d和B-2p轨道电子杂化后,在B、Ti原子间形成了较强的化学键,从而促进了Al(111)/TiB2(0001)界面处的强结合作用,提高了Al(111)/TiB2(0001)界面粘附功,故而改善了B4C/Al界面的润湿性。根据同样的理论依据,V掺杂体也具有较低的反键态,V和B之间的强结合效果或许能够改善B4C/Al界面的润湿性,成为又一理想的溶体改性掺杂元素。  相似文献   

3.
B_4C/Al复合材料是目前最理想的中子吸收材料,但工业上常用的液态搅拌法制备过程中存在着界面润湿性差的问题。结合实验及第一性原理的方法,通过研究Al(111)/AlB_2(0001)和Al(111)/TiB_2(0001)界面的结构来分析工业上添加过渡元素Ti对B_4C/Al界面润湿性的改善机制。通过计算发现,Al(111)/TiB_2(0001)界面相对Al(111)/AlB_2(0001)界面具有更高的粘附功值,说明其界面结合更强。进一步对比Ti掺杂二硼化物和AlB_2的偏态密度结构,发现Ti掺杂体具有较低的反键态,表明Ti-3d和B-2p轨道电子杂化后,在B、Ti原子间形成了较强的化学键,从而促进了Al(111)/TiB_2(0001)界面处的强结合作用,提高了Al(111)/TiB_2(0001)界面粘附功,故而改善了B_4C/Al界面的润湿性。根据同样的理论依据,V掺杂体也具有较低的反键态,V和B之间的强结合效果或许能够改善B_4C/Al界面的润湿性,成为又一理想的溶体改性掺杂元素。  相似文献   

4.
Mg2B2O5晶须增强镁基复合材料的组织与界面结构研究   总被引:1,自引:0,他引:1  
采用光学显微镜、透射电子显微镜和X射线衍射仪研究Mg2B2O5晶须增强镁基复合材料的铸态组织及Mg2B2O5/AZ91D界面反应产物。结果表明:Mg2B2O5晶须具有孪晶结构,其孪生面和晶体生长方向分别为(202)和[010];部分Mg2B2O5晶须中存在MgB4O7颗粒相;在基体晶界与Mg2B2O5晶须之间存在等轴状Mg2Si相;Mg2B2O5/AZ91D界面处存在厚度不均匀的MgO和MgB2相界面层。尽管Mg2B2O5、MgO和MgB2之间没有确定的晶体学位相关系,但在特定Mg2B2O5晶须表面观察到(202)Mg2B2O5//(002)MgO,[010]Mg2B2O5//[110]MgO和(002)MgO//(0001)MgB2,[110]MgO//[2110]MgB2取向关系。最后,讨论Mg2B2O5晶须对复合材料组织结构和性能的影响。  相似文献   

5.
采用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜和透射电子显微镜对萃取Mg2B2O5w的物相、表面元素化学状态变化及Mg2B2O5w/AZ91D复合材料界面反应产物进行了研究.结果表明:Mg2B2O5w/AZ91D界面处存在厚度不均匀的MgO和MgB2相界面层;MgO的形成主要与复合材料制备过程中晶须表面上的吸附氧有关,而界面产物MgB2则应来源于Mg2B2O5w分解产物B2O3与基体中Mg的反应;Mg2B2O5w、MgO和MgB2之间通常没有确定的晶体学位相关系,但在特定Mg2B2O5w表面观察到(202)Mg2B2O5w//(002)MgO,[010]Mg2B2O5//[110]MgO和(002)MgO//(0001)MgB2,[110]MgO//[2110]MgB2取向关系.  相似文献   

6.
浸渍/挤压(SiCw+B4Cp)/Mg(AZ91)复合材料的界面特征   总被引:2,自引:1,他引:2  
用透射电子显微术研究了 (SiCw B4Cp) /Mg(AZ91)复合材料的界面特征。结果表明 :B4Cp/Mg界面区反应生成物混乱 ,而在SiCw/Mg界面区较为规则。SiCw/Mg界面生成了两种反应物 ,其中MgO与SiC具有 180 旋转孪晶关系 ,孪晶面为 { 111} SiC ,MgO,而MgB2 一般以SiC表面一薄层MgO为基底生长成较大且完整的晶形 ,MgB2 与MgO之间的晶体学取向关系为 :(1—11) MgO∥ (0 0 0 1—) MgB2 ,[110 ]MgO∥ [112 —0 ]MgB2 。高分辨观察结合计算机模拟确定了MgO/MgB2 界面有两种原子占位方式 ,一种为界面处有两层Mg原子分别属于两相 ,另一种为界面处只有一层Mg原子为两相共享。此外 ,基体中第二相Mg17(Al,Zn) 12 和未知弥散小颗粒均与基体Mg非共格  相似文献   

7.
通过液态原位反应合成制备MgO/Mg2Si增强Mg-Li基复合材料,利用TEM对增强相形态及界面结构进行了观察。实验结果表明,复合材料中增强粒子与基体界面结合良好,无反应物生成。确定了增强粒子与基体的界面取向关系,MgO与基体α相的晶体学关系为[100]MgO‖[4043]α,(011)MgO‖(1210)α;Mg2Si与基体β相的晶体学关系为[310]Mg2Si‖[411]β,(131)Mg2Si‖(001)β。  相似文献   

8.
MgO/Mg2Si增强Mg-Li基复合材料的界面结构   总被引:2,自引:0,他引:2  
通过液态原位反应合成制备MgO/Mg2Si增强Mg-Li基复合材料,利用TEM对增强相形态及界面结构进行了观察.实验结果表明,复合材料中增强粒子与基体界面结合良好,无反应物生成.确定了增强粒子与基体的界面取向关系,MgO与基体α相的晶体学关系为[100]MgO//[40( ̄4)3]α,(011)MgO//(( ̄1)2( ̄1)0)α;Mg2Si与基体β相的晶体学关系为[310]Mg2Si//[411]β,(1( ̄3)( ̄1))Mg2Si//(001)β.  相似文献   

9.
利用第一性原理计算方法研究了TiN(111)/BN/TiN(111)界面的16个理论界面构型.计算结果表明,最稳定界面构型为top-top-BN构型,此构型中B原子只与周围N原子成键,为四面体配位.同时计算了top-top-BN构型的电子结构和成键特性以及界面结合强度,结果表明,top-top-BN构型界面上的键为较强共价键,其界面结合强度比TiN(111)板层或TiN块体材料的(111)晶面间的结合强度大,说明此构型具有强界面特征.  相似文献   

10.
采用基于密度泛函理论的第一性原理方法,研究掺杂单个Al、Zn、Cu、Ni、Li、Zr原子对3C-SiC/Mg体系界面结合的影响,选取代表性的Zn原子和Zr原子进行Mulliken电荷、重叠布居数和态密度计算分析。结果表明,3C-SiC/Mg界面模型最稳定的堆垛结构是将5层的Mg(0001)堆垛在10层的 3C-SiC(111)面上,C封端的中心型模型在6种3C-SiC/Mg模型结构中分离功最大,界面间距最小,界面的润湿性最好;掺杂Zn原子后,3C-SiC/Mg-Zn体系的分离功减小,掺杂的Zn原子与Mg原子成反键,态密度中赝能隙变小使得3C-SiC/Mg-Zn体系的共价键性减弱,不利于3C-SiC/Mg-Zn界面结合; 掺杂Al、Cu、Ni、Li、Zr原子后,体系的分离功增大,Zr原子对界面润湿性的改善效果最好。掺杂Zr原子后,界面层Mg原子与Si原子的反键消失,与C原子在界面处形成Zr-C强共价键,态密度离域性增强,成键能力增强,导致3C-SiC/Mg-Zr体系的分离功增大最多。  相似文献   

11.
In this work the reaction mechanism in the WO3–Mg/C systems and ammonium paratungstate (APT)–Mg/C systems are studied. As reducer magnesium, carbon or combinations of both are explored. It is shown that in the WO3–Mg system the reduction undergoes by solid–solid mechanism before melting Mg, where metallic tungsten and MgO are formed. Unlike this system, in the WO3–C system mainly WOx (< 880 °C) and WO2 (> 960 °C) and small amount W is formed. In the WO3–Mg–C ternary system reduction temperature shifts to higher temperature range and depends on amount of carbon. Similar to WO3–Mg system, APT–Mg reaction starts and completes in the solid state. Thus, firstly the APT decomposes, then reduction of formed WO3 takes place at ~ 600 °C yielding W and MgO. Likewise to WO3–Mg system adding carbon into APT–Mg mixture shifts reduction temperature to even higher temperature zone which can exceed melting point of Mg and further reduction undergoes with molten magnesium. It is shown that the reduction products are MgO and W.  相似文献   

12.
Through-silicon via (TSV) technology for 3D stacking is attracting much attention as a means of alleviating the miniaturization limits on advanced semiconductor devices. Despite a great deal of research, low load (<1 MPa), low temperature (<473 K) and short time (<300 s) solid phase bonding with high heat resistance (>623 K) to prevent the damage of weak low-k dielectric material, etc. has not been realized. In this work, we examine a new Ag–Sn thin film bonding system to replace Cu–Cu direct bonding. It is found that Ag/Sn/nano Ag-nano Ag/Sn/Ag thin film bonding systems (especially when the film thickness of the surface Ag is controlled to around 10 nm) is a promising approach because (1) it enables low load (<0.4 MPa), low temperature (<453 K) and short time (<300 s) bonding, and (2) the bonded interface has a high heat resistance (>673 K) and joint strength (>29 MPa). It is found that it may be possible to realize an optimal solid-phase bonding system for wafer-level 3D-stacking for 3D-IC which can satisfy a hierarchical temperature-based bonding method that includes TSV formation.  相似文献   

13.
Aluminum and magnesium were joined through diffusion bonding using Ni interlayer. The microstructure and mechanical performance of the Al/Ni/Mg joints at different temperatures was investigated by means of scanning electron microscope(SEM), electro-probe microanalyzer(EPMA), X-ray diffraction(XRD), Vickers hardness testing, and shear testing. The results show that the addition of Ni interlayer eliminates the formation of Mg–Al intermetallic compounds and improves the bonding strength of the Al/Mg joints. The Al/Ni/Mg joints are formed by the diffusion of Al, Ni and Mg, Ni. The microstructure at the joint interface from Al side to Mg side is Al substrate/Al–Ni reaction layer/Ni interlayer/Mg–Ni reaction layer/Mg substrate multilayer structure. The microhardness of the Mg–Ni reaction layer has the largest value of HV 255.0 owing to the existence of Mg_2Ni phase.With the increase of bonding temperature, the shear strength of the joints increases firstly and then decreases.The Al/Ni/Mg joint bonds at 713 K for 90 min, exhibiting the maximum shear strength of 20.5 MPa, which is greater than that of bonding joint bonded directly or with Ag interlayer. The fracture of the joints takes place at the Mg–Ni interface rather than the Al–Ni interface, and the fracture way of the joints is brittle fracture.  相似文献   

14.
First principles calculations were carried out for α-Al2O3(0001) surface and γ-TiAl(111)/α-Al2O3(0001) interface to study the adhesion properties of the interface and to clarify the mechanisms that govern the adhesion of TiAl and its oxidation product Al2O3. Two type interface models, the TiAl(111) with Al- and O-terminated α-Al2O3(0001) surfaces denoted as T(A1)-type and T(OT)-type interface, respectively, were considered. The Universal Binding Energy Relation (UBER) was used to determine the separation between TiAl and Al2O3 and the work of adhesion of the γ-TiAl(111)/α-Al2O3(0001) interface. Optimization was then performed for all interfaces considered here using the separation obtained with UBER. The lowest work of adhesion is −1.05 J/m2 for the T(A1)-type interface and is −4.04 J/m2 for the T(OT)-type interface. There exists competition between O–Ti and O–Al (on the TiAl side) interactions; however O–Al bond is stronger than O–Ti bond because the main body of the Al valences is involved in the hybriding with O p electrons, while only part of the Ti d valence is involved in the O–Ti bonding. Thus the O–Al interaction dominates the adhesion between TiAl(111) and Al2O3(0001) surfaces, and it can be inferred that an Al-rich TiAl surface will favor the adhesion between TiAl/Al2O3.  相似文献   

15.
The aim of the present study is to identify the properties of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials by transmission electron microscopy and nano-indentation analyses. Cu/Al clad materials were fabricated by hot pressing under 200 MPa at 250 °C for 1 h and then heat treated at 400 °C for 1 h. Nano-indentation measurement was conducted to evaluate the nanohardness and modulus of the intermediate phases formed between the Cu/Al interfaces. A 3-tier diffusion layer was observed at the Cu/Al interfaces. Knoop microhardness values at the bonding interface were 7 to 11 times that of the Cu and Al matrix metals. The intermediate phases formed at the bonding interface were Al4Cu9, AlCu, and Al2Cu. A mapping analysis confirmed that the Al and Cu particles moved via mutual diffusion toward the intermediate phases formed at the bonding interface. The nanohardness values of η2-AlCu and γ1-Al4Cu9 were 4 to 7 times that of the Cu and Al matrix metals. Nanohardness and Knoop microhardness measurement curves exhibited similar tendencies. The rigidity values of the respective intermediate phases can be arranged in descending order as follows: γ1-Al4Cu9 > η2-AlCu > θ-Al2Cu.  相似文献   

16.
Density functional theory was used to characterize the atomic structure and bonding of the Al | Ω interface in a Al–Cu–Mg–Ag alloy. The most stable interfacial structure was found to be connected by Al–Al bonds with a hexagonal Al lattice on the surface of the Ω phase sitting on the vacant hollow sites of the Al {1 1 1} matrix plane. The calculations predict that when substituted separately for Al at this interface, Ag and Mg do not enhance the interface stability through chemical bonding. Combining Ag and Mg, however, was found to chemically stabilize this interface, with the lowest-energy structure examined being a bi-layer with Ag atoms adjacent to the Al matrix and Mg adjacent to the Ω phase. This study provides an atomic arrangement for the interfacial bi-layer observed experimentally in this alloy.  相似文献   

17.
The formation of oxidation-resistant buffer layers on (001) oriented Cu for coated high-temperature superconducting tape applications was investigated. The approach employed Cu/Mg multilayer precursor films that were subsequently annealed to form either Mg-doped fcc Cu or intermetallic Cu2 Mg. The precursor consisted of an Mg/Cu multilayer stack with 5 each of 25 nm thick Mg and 25 nm thick Cu layers which were grown at room temperature by sputter deposition. At annealing temperature of 400 °C, formation of the intermetallic Cu2 Mg was observed. X-ray diffraction showed that the Cu2 Mg (100) oriented grains were epitaxial with respect to the underlying Cu film, possessing a cube-on-cube orientation. In order to test oxidation resistance, CeO2 films were deposited at elevated temperature on Ni/(Cu,Mg)/Cu/MgO structures. In case of the CeO2 film on Ni/Cu/MgO, significant surface roughness due to the metal oxidation is observed. In contrast, no surface roughness is observed in the SEM images for the CeO2/Ni/(Cu,Mg)/Cu/MgO structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号