首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In very recent years,ultraviolet(UV) persistent luminescent materials(PLMs) have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the design and development of excellent UV PLMs remain challenging.Here,we report a new Gd-based PLM NaGdGeO4:Bi3+ with super-long UVA persistent luminescence(PersL).By further codoping Li+ ions to increase the concentration of traps,the UVA PersL int...  相似文献   

2.
The Y3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+)(YAGG) nano-phosphors with homogeneous particle-size distribution,low aggregation and average crystalline size of about 65 nm were obtained using a modified Pechini method.Only slight aggregation of the crystallites occurs after post-annealing at 1100℃.The intense Ce~(3+)bands in the excitation spectra of the Ce~(3+),Cr~(3+),Nd~(3+)co-doped materials monitoring the Cr~(3+) emission at 690 nm indicate energy transfer from Ce~(3+) to Cr~(3+).Weak Nd~(3+) lines are observed,as well.In addition,the emission of Nd~(3+)at 1060 nm with excitation of Ce~(3+) and Cr~(3+) confirms the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.The short average luminescence decay times for the Ce~(3+) emission indicate the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.Eventually,the Y_3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+) nano-phosphors exhibit persistent luminescence originating from the 4f~3→4f~3 transitions of Nd~(3+) which matches well to the first biological window to be used in bioimaging applications.  相似文献   

3.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

4.
Persistent luminescence (PersL) materials are widely used in safety indication, traffic and transportation signs, architectural decoration and other fields. In this paper, (Y1?xCex)3(Al0.9995Cr0.0005)2Ga3O12 (x = 0.001, 0.002, 0.003, 0.005) transparent ceramics were successfully prepared by solid-state reaction method in air followed by HIP post-treatment. With the increase of Ce3+ doping concentration, the optical quality of the as-prepared ceramics is improved and the morphology is denser. Luminescent quenching occurs when the Ce3+ concentration is more than 0.2%. The as-prepared transparent ceramics were annealed in different atmospheres. From the PersL decay curves, the transparent ceramics after air annealing show the best PersL performance: luminance with 4424.0 mcd/m2 and PersL duration over 865 min after ceasing 365 nm excitation, respectively. The effects of Ce3+ doping concentration and annealing atmospheres are also discussed in detail.  相似文献   

5.
Near infrared to near infrared (NIR–NIR) photo-stimulated persistent luminescence (PSPL) has shown excellent potential in high-resolution bioimaging for deep tissues. However, the PSPL in NIR-Ⅱ region (900–1700 nm) is still lacking. In this work, Ca2Ga2GeO7:Yb3+,Tb3+ (CGGYT) phosphor with unique low-dimensional crystal structure was synthesized by high-temperature solid–state reaction. Thanks to the carriers transferring from deep traps to shallow ones induced by low energy light, the 978 nm PSPL originating from 2F5/2 to 2F7/2 transition of Yb3+ induced by multimode stimulating (980 nm or WLED) is successfully realized after pre-excited by UV lamp. The NIR PSPL of the specimen can be repeatedly stimulated after placed in dark for 12 h. Moreover, the results indicate that codoping with Tb3+ can significantly enhance the NIR-II PSPL owing to the quantum cutting persistent energy transfer (QC PET) from Tb3+ to Yb3+. Our study points to a new direction for the future development of multimode PSPL materials for bioimaging or multimode optical storage applications.  相似文献   

6.
Yb3+-doped phosphors have characteristic near-infrared (NIR) emissions, but their applications in phosphor-converted light-emitting-diodes (pc-LEDs) and Si solar cells are limited due to their mismatching excitation spectra. Here, we selected nitride La3Si6N11 (LSN) as host material to achieve Yb3+ NIR emission upon low-energy charge transfer (CT) excitation. The obtained phosphor LSN:Yb3+ has a broad CT excitation band ranging from 250 to 500 nm and narrowband NIR emissions ranging from 950 to 1100 nm centered at 983 nm. On the basis of spectral data, the vacuum referred binding energies (VRBE) schemes are constructed to locate energy levels of all lanthanide ions in LSN. We also fabricated NIR pc-LED device using 395 nm LED chip to demonstrate the potential applications of LSN:Yb3+ phosphors.  相似文献   

7.
Ho3+ doped ZBLAN glass with 2.0 and 2.9 μm emission was prepared. In order to further improve the luminescence of Ho3+, halogen ions (Cl, Br, I) were introduced to reduce the maximum phonon energy and phonon state density of the sample. At the same time, Nd3+ was introduced to transfer the energy to Ho3+ pumped with a 793 nm laser (Nd3+:4F5/2,4F3/2→Ho3+:5I6). The effect of different halogen ion on the luminescent properties of the fluoride halide glass was compared. The results show that the luminescent intensity of infrared increases with the introduction of different halogen ions. By comparison, it is found that the sample with I has the strongest luminescence of 1064 nm, 2.0 μm and 2.9 μm. This is consistent with the calculated J-O intensity parameters. In addition, the 2.0 and 2.9 μm emission of Ho3+ pumped with a 450 nm laser will not disappear. A mid-infrared sample with multi-wavelength excitation and multi-wavelength emission can be obtained. Nd3+/Ho3+ co-doped fluoride halide glasses with 1064 nm, 2.0 μm and 2.9 μm luminescence were prepared by melt quenching method. The luminescent mechanism and the energy transfer process between the two ions of Nd3+/Ho3+ co-doped fluoride halide glass were studied. The J-O parameters, luminescence lifetime and absorption emission cross-sectional area of Ho3+ and Nd3+ were calculated, respectively. It is found that the value of Ω2 in the glass matrix increases with the introduction of different halogen ions, while Ω4 and Ω6 do not change obviously in different glass compositions. This is because the environment of the crystal field around the rare earth ions changes. The crystal phase and phonon energy of the sample were analyzed by X-ray diffraction pattern and a Fourier transform infrared spectrometer, respectively. Based on the above spectra and data (phonon energy is 634.71 cm−1), it can be predicted that Nd3+/Ho3+ co-doped fluoride halide glass is a potential mid-infrared luminescent material.  相似文献   

8.
Here, we report a series of Bi3+-doped Ba2Y1–xScxNbO6 (0 ≤ x ≤ 1.0 mol) phosphors by using the traditional high temperature solid-state reaction. To achieve the structural and photoluminescent (PL) information, several experimental characterizations and theoretical calculations were carried out, including X-ray diffraction (XRD), Rietveld refinement, UV-visible diffuse reflectance and PL spectra, temperature dependent PL spectra, and density functional theoretical (DFT) calculations. The XRD results show that the Bi3+-doped Ba2Y1–xScxNbO6 samples belong to the double-perovskite phase with a cubic space group of Fm3?m, and the diffraction positions shift toward high diffraction angle when the larger Y3+ ions are gradually replaced by the smaller Sc3+ ions. In addition, the refined XRD findings show that the Bi3+ ions tend to substitute the Y3+ and Sc3+ sites in the Bi3+-doped Ba2Y1–xScxNbO6 (0 < x < 1.0 mol) solid solutions. The PL spectra show that the emission positions of the solid solution samples tune from 446 to 497 nm with the increase of Sc3+ content, which can be attributed to the modification of crystal field strength around Bi3+ ions. Moreover, there is energy transfer from the Ba2YNbO6 host to Bi3+ ions, which is dominated by a resonant type via a dipole-quadrupole (d-q) interaction. The Ba2Y0.6Sc0.4NbO6:0.02 molBi3+ shows the strongest PL intensity under 365 nm excitation, with the best quantum efficiency (QE) of 68%, and it keeps 60% of the room temperature emission intensity when the temperature increases to 150 °C, meaning that the Ba2Y0.6Sc0.4NbO6:Bi3+ features excellent thermal quenching of luminescence. By combining this optimal sample with a commercial red-emitting Sr2Si5N8:Eu2+ phosphor, and a commercial 365 nm UV LED chip, a white LED device, with the color temperature (CT) of 3678 K, color rendering index (CRI) of 67.9, and CIE coordinates at (0.371, 0.376), is achieved.  相似文献   

9.
Ce3+/Dy3+/Tb3+/Eu3+/Mn2+ and Cr3+ ions co-doped Zn3Al2Ge2O10 phosphor were prepared by a high-temperature solid-state method. X-ray diffraction patterns prove the cubic phase structure of prepared Zn3Al2Ge2O10 phosphor. Emission, excitation spectra and decay curves confirm the tunable luminescence. Different degrees of the decrease of emission FWHM in Zn3Al2Ge2O10:0.02Cr3+,RE (RE = Ce3+, Dy3+, Tb3+, Eu3+) and Zn3Al2Ge2O10:0.02Cr3+,Mn2+ are observed. The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect, and the nephelauxetic effect is dominant. Therefore, the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+ in Zn3Al2Ge2O10:0.02Cr3+, and for Zn3Al2Ge2O10:0.02Cr3+,Ce3+ and Zn3Al2Ge2O10:0.02Cr3+,Dy3+, it is a constant. The variation of Zn3Al2Ge2O10:0.02Cr3+,Tb3+ is more obvious than that of Zn3Al2Ge2O10:0.02Cr3+,Eu3+, because Tb3+ ion has smaller electronegativity. Thus, the tunable luminescence of Cr3+ can be realized by co-doping different ions. And these phosphors have potential applications in light-emitting diodes for plant growth.  相似文献   

10.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   

11.
Herein, we reported novel Y4GeO8:Er3+,Yb3+ phosphors elaborated via conventional solid-state reaction, and we further explored their properties as optical thermometer by using fluorescence intensity ratio (FIR) method complemented by detailed analysis on crystal structure, up-conversion luminescence and energy transfer from Yb3+ to Er3+. Upon 980 nm laser excitation, Y4GeO8:Er3+,Yb3+ phosphors present 525, 547 and 659 nm emission bands assigned to the characteristic transitions of Er3+. Furthermore, Y4GeO8:Er3+,Yb3+ samples show outstanding temperature sensing performances. To be specific, the minimal temperature resolution is 0.03 K (303 K), and the relative sensitivity of FIR can be up to 1.152%/K (303 K). Hence, Y4GeO8:Er3+,Yb3+ phosphors can be possible candidates for thermometry devices.  相似文献   

12.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

13.
Novel Nd3+/Yb3+ co-doped sodium calcium silicate glasses were prepared by melting quenching method:Spectroscopic study was carried out as a function of doping content by fixing sensitizer(Nd3+) concentration to 0.2 mol% and adjusting activator(Yb3+) from 0 to 1.0 mol%.The energy transfer(ET)mechanisms between Nd3+and Yb3+ are discussed based on their energy levels and excitation powerdependence emission intensity.Results show that...  相似文献   

14.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

15.
Zirconium metal–organic frameworks ZrOBDC (where BDC = C6H4(COOH)2, terephthalic acid) doped and co-doped with rare earth ions Ln (ZrOBDC:Ln3+, where Ln3+ = Eu3+ and Tb3+ as well as Er3+ and Yb3+) were used as precursors for the design of tetragonal rare earth doped zirconia nanoparticles (t-ZrO2:Ln3+ NPs) through annealing process. Preparation, characterization and luminescence properties of ZrOBDC:Ln3+ and ZrO2:Ln3+ NPs were investigated. The as-obtained t-ZrO2:Ln3+ NPs have high purity with an average size of 20–30 nm. The luminescence spectra of ZrOBDC:Tb3+ and ZrOBDC:Eu3+ display strong green and red emission at around 544 and 611 nm which correspond to 5D4 → 7F5 and 5D0 → 7F2 transitions of Tb3+ and Eu3+ ions, respectively. The green and red up-conversion emissions of ZrO2:Er3+,Yb3+ NPs due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions are observed under 976 nm laser excitation.  相似文献   

16.
This work presents the synthesis of Y2O3:Eu3+,xCa2+ (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, 7 mol%, 9 mol%, 11 mol%) nanophosphors with enhanced photoluminescence properties through a facile solution combustion method for optoelectronic, display, and lighting applications. The X-ray diffraction (XRD) patterns of the proposed nanophosphor reveal its structural properties and crystalline nature. The transmission electron microscope (TEM) results confirm the change in the shape of the particle and aggregation of particles after co-doping with Ca2+. Fourier transform infrared spectroscopy (FTIR) and Raman vibrations also confirm the presence of Y–O vibration and subsequently explain the crystalline nature, structural properties, and purity of the samples. All the synthesized nanophosphors samples emit intense red emission at 613 nm (5D07F2) under excitation with 235, 394 and 466 nm wavelengths of Eu3+ ions. The photoluminescence (PL) emission spectra excited with 235 nm illustrate the highest emission peak with two other emission peaks excited with 466 and 394 nm that is 1.4 times higher than 466 nm and 1.9 times enhanced by 394 nm wavelength, respectively. The emission intensity of Y2O3:Eu3+,xCa2+ (5 mol%) is increased 8-fold as compared to Eu:Y2O3. Doping with Ca2+ ions enhances the emission intensity of Eu:Y2O3 nanophosphors due to an increase in energy transfer in Ca2+→Eu3+ through asymmetry in the crystal field and by introduction of radiative defect centers through oxygen vacancies in the yttria matrix. It is also observed that the optical band gap and the lifetime of the 5D0 level of Eu3+ ions in Y2O3:Eu3+,xCa2+ nanophosphor sample gets changed with a doping concentration of Ca2+ ions. Nanophosphor also reveals high thermal stability and quantum yield as estimating activation energy of 0.25 eV and 81%, respectively. CIE, CCT, and color purity values (>98%) show an improved red-emitting nanophosphor in the warm region of light, which makes this material superior with a specific potential application for UV-based white LEDs with security ink, display devices, and various other optoelectronics devices.  相似文献   

17.
Recently,the ultraviolet(UV) persistent luminescence material(PLM) has attracted extensive attention.However,the design and development of new UV PLM and exploring their promising advanced application remain challenges.Here,we developed a new dopant-free self-activated UVA PLM,Zn2 Al2 SiO7,which could be applied in anti-counterfeiting field.Zn2 Al2 SiO7 shows UVA persistent luminescence(PersL) peaking at 380 nm after 254 nm UV lam...  相似文献   

18.
K.  Lemanski  Deren    A.  Gagor    W.  Strek 《中国稀土学报(英文版)》2009,27(4):560-563
Absorption, excitation and emission spectra as well as decay time measurements at 10, 77, and 300 K were performed for Ga3Gd3Sc2O12 garnet single-crystal doped with Cr3+ and Nd3+ ions. Strong reabsorption of Cr3+ emission by Nd3+ absorption lines was observed. The assignments of f–f and d–d transitions were proposed. The broad emission band of chromium ions is an indication that weak/intermediate crystal field strength is present at the Cr3+ site.  相似文献   

19.
Compared with Y3Al5O12:Ce3+,Y3MgAl3SiO12:Ce3+(YMASG:Ce3+) reveals great potential for highpower white lighting with red-shift spectrum.Herein,YMASG:Ce3+ transparent ceramics were explored to be synthesized in the air following hot isostatic pressure(HIP) treatment to obtain tunable and optimized optical properties.Then phase purity,microstructure,transmittance,and photoluminescence of YM...  相似文献   

20.
In this work, the Gd3+/Eu3+ activated Ba3Y4O9 (BYO) phosphors were successfully synthesized via coprecipitation method at 1400 °C. The precursor composition, crystal structure stability, microscopic morphology, photoluminescence (PL)/photoluminescence excitation (PLE) spectra and fluorescence attenuation analysis of the phosphors are discussed in detail. The chemical composition of the precursor was determined by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry (TG) analysis; According to field emission-scanning electron microscopy (FE-SEM) analysis, it is found that the particle size of phosphor is uniform and the agglomeration is few. According to PL/PLE spectra analysis, Ba3Y3.28Eu0.6Gd0.12O9 phosphors has the strongest excitation band at 260 nm and the strongest emission band at 614 nm, and the fluorescence intensity of Ba3Y3.28Eu0.6Gd0.12O9 is higher than that of Ba3Y3.4Eu0.6O9. The quenching concentration of Eu3+ in Ba3Y3.88–4xEu4xGd0.12O9 phosphors is x = 0.15 and the mechanism of quenching concentration of Eu3+ is electric dipole-quadrupole type interactions. The lifetime value of Ba3Y3.88–4xEu4xGd0.12O9 (x = 0.15) phosphors is 0.686 ms and decreases with the increase of Eu3+ content. In addition, the CIE chromaticity diagram of Ba3Y3.28Eu0.6Gd0.12O9 phosphors is (0.66, 0.34). Finally, the lamp beads assembled with Ba3Y3.28Eu0.6Gd0.12O9 phosphors have an ideal luminous effect. Therefore, the Ba3Y3.88–4xEu4xGd0.12O9 phosphors designed in this work may hopefully meet the requirements of various lighting and optical display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号