首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tri-doped Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_9 LiY_(2/3)(PO_4)7:Ce~(3+)samples present two obvious emission peaks,indicating that Ce~(3+)ions occupy two different kinds of lattice sites(Ca(1/2) and Ca(3)),As a good sensitizer for Tb~(3+),Ce~(3+)ions in Ca_9 LiY_(2/3)(PO_4)_7 lattice can effectively transfer part of energy to Tb~(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce~(3+) and Tb~(3+) co-doped Ca_9 LiY_(2/3)(PO_4)_7 samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn~(2+)ions as red emission components were added,forming tri-doped single-phase Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors.The Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce~(3+),Tb~(3+)and Mn~(2+).Especially,Ca_9 LiY_(2/3)(PO_4)_7:0.09 Ce~(3+),0.12 Tb~(3+),0.30 Mn~(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce~(3+)(360 nm),Tb~(3+)(545 nm) and Mn~(2+)(655 nm) decreases to 63%,69%,and 72% of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.  相似文献   

2.
A series of Ca_(10)Na(PO_4)_7:Ce~(3+)/Tb~(3+)/Mn~(2+)(CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+)) phosphors with high brightness were synthesized by high-temperature solid-state method. X-ray diffraction(XRD), scanning electron microscopy(SEM), diffuse reflectance spectra(DRS), photo luminescence(PL) spectra, luminescence decay curves and thermally stability were performed to characterize the as-prepared samples. For Ce~(3+)-doped samples, an intense and broad band emission is present under 265 nm excitation. When Ce~(3+) and Tb~(3+)are codoped, energy transfer(ET) process from Ce3+ to Tb3+ is demonstrated with electric dipole-dipole interaction. The internal and external quantum efficiencies(QEs) of CNPO:0.15 Ce~(3+), 0.04 Tb~(3+), 0.005 Mn~(2+)are measured to 76.79% and 54.11% under 265 nm excitation and temperature-dependent PL intensity can remain 51.78% at 150 ℃ of its initial intensity at 25 ℃. It is indicated that single-phased white lightemitting CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+) phosphor can serve as a promising phosphor for illumination devices.  相似文献   

3.
A series of single-phase and color-tunable phosphors Sr2La3(SiO4)3F:0.15Tb3+,xSm3+(SLSOF:0.15Tb3+,xSm3+) was prepared using solid-state route.The X-ray diffraction(XRD) was used to characterize the phase of the as-prepared samples.The synthesized phosphors have apatite-type structure without other impurities.Sm3+ and Tb3+ ions substitute La3+ into the lattice and form a single...  相似文献   

4.
A series of Tb~(3+) and Eu~(3+) co-doped NaY(WO_4)_2 phosphors were synthesized by hydrothermal reactions.The crystal structure,morphology,upconversion luminescent properties,the energy transfer from Tb~(3+) to Eu~(3+)ions and the ~5 D_4→ ~7 F_5 transition of the Tb~(3+) ion in NaY(WO_4)_2:Tb~(3+),Eu~(3+) phosphors were investigated in details.The results indicate that all the synthesized samples are of pure tetragonal phase NaY(WO_4)2.Furthermore,the micrometer-sized needle spheres and excellent dispersion of the particles are obtained by adding polyethylene glycol(PEG-2000) as the surfactant.Phosphors of NaY(WO_4)_2:Tb~(3+),Eu~(3+) exhibit the492 nm blue emission peak,546 nm green emission peak,595 nm orange emission peak and 616 nm red emission peak under 790 nm excitation.The energy transfer from Tb~(3+) to Eu~(3+) is a resonant transfer,in which electric dipole-dipole interaction plays a leading role.By adjusting the doping concentration of Eu~(3+) in NaY(WO_4)_2: 1.0 mol%Tb~(3+),xmol%Eu~(3+) phosphors,the emitting color of UC phosphors can be tuned from green to red.  相似文献   

5.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique, the crystalline structures of samples characterized by XRD, and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated. The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped. It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+, and Ce3+ was not luminous by itself. The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1, when excited at 310 nm, which was the characteristic adsorption wavelength of Ce3+.  相似文献   

6.
The spectroscopic properties of a series of Dy~(3+) single-doped and Dy~(3+)/Nd~(3+),Dy~(3+)/Tb~(3+),and Dy~(3+)/Tm~(3+)co-doped YAlO_3(yttrium aluminum perovskite,YAP) phosphors were investigated and compared through the measurements of optical absorption,emission spectra,and fluorescence decay curves.For the Dy~(3+) ion single-doped samples,the intensity of each absorption band increases with an increment in Dy~(3+) ion doping concentration,and the identified strong absorption peak at 447 nm indicates that Dy~(3+):YAP phosphors are suitable to be pumped by a blue laser diode(LD).For all co-doped samples,absorption peaks of Dy~(3+) ion along with some of the absorption bands of Nd~(3+),Tb~(3+),and Tm~(3+) ions are observed.Under 351 and 447 nm excitation,a prominent emission peak at 572 nm was obtained in all the samples,corresponding to Dy~(3+):~4 F_(9/2)→~6 H_(13/2) transition.Here,2 at% Dy~(3+):YAP phosphor exhibits the highest yellow emission intensity under 447 nm pumping.Among the three kinds of Dy~(3+) co-doped phosphors,Dy~(3+)/Tb~(3+):YAP phosphor possesses the dominant yellow emission.The fluorescence decay curves show exponential behaviour and are fitted well.The Commission International de L'Eclairage(CIE)chromaticity coordinates were calculated following the respective emission spectra,and it is found that all the coordinates locate in the yellow region.The energy transfer(ET) processes were investigated and the concentration quenching mechanism was discussed.The obtained results suggest that Dy~(3+)-activated YAP phosphors are good candidates for yellow LED applications.  相似文献   

7.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

8.
In this work,combustion synthesis was used for the first time to fabricate a phosphor material with red emission for applications in solid-state white-light lamps.We synthesized a material with emission wavelength at λem=617 nm,excited under long UV-blue wavelength based on Eu3+,Tb3+-activated molybdates Li3Ba2(La1-x-yEuxTby)3(MoO4)8 with 0 ≤ x ≤1 and 0 ≤ y ≤ 1.A series of pow...  相似文献   

9.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

10.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

11.
A novel non-contact optical thermometer, qualified with high sensitivity and temperature resolution, is urgently needed for temperature measuring of micro devices, moving objects and specific severe environments. Hence, a series of dual-emitting La5Si2BO13:Ce3+,Eu2+ phosphors were synthesized. The two ions show diverse responses with the changing in temperature. The variational emissions of Ce3+ and Eu2+ can be converted to FIR (fluorescence intensity ratio) signals. The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K, respectively. It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region (293–373 K), showing the great temperature measuring property especially in low temperature region. The temperature sensing characteristics are superior to the results of most previous reports. The energy transfer (ET) process is certified to occur from Ce3+ to Eu2+ ions. These studies indicate that La5Si2BO13: Ce3+,Eu2+ phosphor could have a good prospect for optical thermometry.  相似文献   

12.
A broadband blue-emitting Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+)(x=0-0.2) phospho rs were synthesized,which can be used for near-UV pumped white light-emitting diodes(w-LEDs).The crystal structures,photoluminescence pro perties,external quantum efficiency,the rmal stability and application perfo rmance of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+),by partially substituting Sr~(2+) with Ca~(2+)(x=0-0.2),were studied by various analytical techniques.When the Ca/Sr ratio of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) gradually increases,the emission peak of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) red-shiftes from 459 to 465 nm,corrected external quantum efficiency increases from 31.8% to 42.9%,and the thermal stability is also improved.The mechanism of the changes of the photoluminescence emission and excitation spectra,external quantum efficiency and thermal stability properties was also investigated in detail.In addition,a w-LED was fabricated by using SrLu_2 O_4:Ce~(3+)(blue),β-sialon:Eu~(2+)(green) and(Sr,Ca)AlSiN_3:Eu~(2+)(red) phosphors combined with a 405 nm near-UV LED chip,and its color rendering index(CRI) reaches 96.0.When Sr_(0.8)Ca_(0.2)Lu_2 O_4:Ce~(3+)is applied as blue phosphor to substitute SrLu_2 O_4:Ce~(3+),the obtained w-LED devices have high luminous efficiency,and CRI greater than 95.0.These re sults show that the Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) can be potential blue phosphors for n-UV pumped high CRI w-LEDs application.  相似文献   

13.
At present,the rare earth(RE) ions doped phosphors have attracted more and more attention because of their excellent properties.In this paper,a series of novel blue-purple β-Ca_3(PO_4)_2:Ce~(3+) phosphors were synthesized by a high temperature solid phase method.The X-ray diffraction(XRD),infrared spectrum,energy dispersive spectroscopy(EDS),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence excitation and emission spectra were used to investigate the crystal structure,composition and the luminescent properties of the resulting samples.The phosphor shows a strong absorption in the ultraviolet band.Under the excitation of 269 nm,the phosphor emits a strong purple fluorescence ranging from 360 to 520 nm.When Ce~(3+) doping content is 0.07 mol,the strongest luminescence intensity is reached,and the concentration quenching mechanism is dipole-dipole(d-d)interaction for Ce~(3+) based on Dexter theory.  相似文献   

14.
Ce3+/Dy3+/Tb3+/Eu3+/Mn2+ and Cr3+ ions co-doped Zn3Al2Ge2O10 phosphor were prepared by a high-temperature solid-state method. X-ray diffraction patterns prove the cubic phase structure of prepared Zn3Al2Ge2O10 phosphor. Emission, excitation spectra and decay curves confirm the tunable luminescence. Different degrees of the decrease of emission FWHM in Zn3Al2Ge2O10:0.02Cr3+,RE (RE = Ce3+, Dy3+, Tb3+, Eu3+) and Zn3Al2Ge2O10:0.02Cr3+,Mn2+ are observed. The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect, and the nephelauxetic effect is dominant. Therefore, the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+ in Zn3Al2Ge2O10:0.02Cr3+, and for Zn3Al2Ge2O10:0.02Cr3+,Ce3+ and Zn3Al2Ge2O10:0.02Cr3+,Dy3+, it is a constant. The variation of Zn3Al2Ge2O10:0.02Cr3+,Tb3+ is more obvious than that of Zn3Al2Ge2O10:0.02Cr3+,Eu3+, because Tb3+ ion has smaller electronegativity. Thus, the tunable luminescence of Cr3+ can be realized by co-doping different ions. And these phosphors have potential applications in light-emitting diodes for plant growth.  相似文献   

15.
A series of Eu~(2+)doped and Eu~(2+)/Mn~(2+) co-doped Mg_(0.695)Si_(0.695)Al_(1.39)O_(3.65)N_(0.35)(MSAON) phosphors were synthesized by solid-state reaction at a lower temperature of 1500℃.The crystal morphology and structure of MSAON host were characterized by SEM,TEM and XRD.The quantum yield(QY) for Eu~(2+)doped MSAON phosphors was measured as high as 62%,indicating the excellent luminous efficiency.For the Eu~(2+)/Mn~(2+)co-doped MSAON phosphor,the photoluminescence spectrum and delay curves reveal the efficient energy transfer(ET) process from Eu2+to Mn~(2+)ions.Meanwhile,the corresponding energy transfer efficiency,critical distance and mechanism are discussed in detail.Temperature-dependent emission spectrum shows the thermal and color stabilities.The emission color of MSAON:Eu~(2+),Mn~(2+)phosphors could be tuned from blue through white to red via varying the concentration of Mn~(2+) ions.White-light-emitting diodes(WLEDs) were successfully fabricated by encapsulating the phosphors in nUV LED(365 nm) devices obtaining white light with color rendering index(CRI) as high as 87.7.The results reveal that the MSAON:Eu~(2+),Mn~(2+)phosphors could have potential application in the field of n-UV WLEDs.  相似文献   

16.
Nanoscale RE3+ (RE=Ce, Tb) doped and codoped lutetium pyrosilicate Lu2Si2O7 (LPS) phosphors were prepared by using the sol-gel method. Heat treatment was performed in the temperature range from 900 to 1100 °C. The crystal structure was analyzed by X-ray diffraction (XRD). The results showed that the β-type structure of LPS was obtained at 1100 °C. The excitation spectra in the UV and VUV ranges and the emission spectra of the samples were measured at room temperature, and their luminescent properties were studied. The energy transfer from Ce3+ to Tb3+ in the codoped samples were observed and discussed.  相似文献   

17.
In order to obtain near-infrared phosphor pumped by blue chip with high luminous efficiency, a novel near-infrared phosphor Ce3+/Er3+ doped La3Si6N11 was designed and firstly prepared via conventional solid-state reactions. The structure and morphology of Ce3+/Er3+ doped La3Si6N11 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared with Er3+ doped La3Si6N11, the emission intensity of the Ce3+, Er3+ co-doped phosphor can be increased more than 5 times. Meanwhile, the mechanism of energy transfer from Ce3+ to Er3+ is confirmed according to the excitation, emission spectra and decay lifetimes curve. Above results suggest that La3Si6N11:Ce3+,Er3+ is a promising near-infrared phosphor for blue pumped LEDs (light-emitting diodes).  相似文献   

18.
A series of Eu2+/Dy3+ single doped and co-doped Na3Sc2(PO4)3 phosphors were synthesized by the high-temperature solid-state method, and their phase, morphology, and luminescence properties were characterized. Under the excitation of 370 nm, the Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor can emit white light whose spectrum is composed of a broad emission band centered at 460 nm and the other three peaks at 483, 577, and 672 nm, respectively. There is energy transfer from Eu2+ to Dy3+ ion in Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor due to the good overlap between the emission spectrum of Na3Sc2(PO4)3:Eu2+ and the excitation spectrum of Na3Sc2(PO4)3:Dy3+, which is further confirmed by the fluorescence lifetime decrease of Eu2+ ion with the increase of Dy3+ concentration. The process of energy transfer is via dipole–quadruple interaction which is confirmed by applying Dexter's theory. By increasing the Dy3+ concentration, the color coordinates of the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors can be adjusted from blue to white, and then to yellow. The optimized concentration of Dy3+ ions is 4.0 mol%, beyond which the concentration quenching will take place. The Na3Sc2(PO4)3:Eu2+,Dy3+ phosphor shows fairly good resistance to thermal quenching behavior, of which the emission intensity at 423 K can maintain 90.3% of the initial value (298 K). These results suggest that the Na3Sc2(PO4)3:0.01Eu2+,xDy3+ phosphors have potential applications as the color-tunable or a single-phase white emitting phosphor in white LEDs.  相似文献   

19.
White light-emitting diodes (WLEDs) fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting. The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor. Here, we report a high quality white light-emitting phosphor Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ with spectral distribution covering whole visible region. Blue light emission originates from Ce3+ ions occupying preferentially Ba2+ site by controlling synthesis conditions. Green and red lights are obtained from Eu2+ occupying Ba2+ (and Ca2+) site and Mn2+ occupying Ca2+ site, respectively. In this triple-doped phosphor, strong red emission with a low concentration of Mn2+ is realized by the efficient energy transfer from Ce3+ and Eu2+ to Mn2+. Furthermore, high quality white light is accomplished by properly tuning the relative doping amount of Ce3+(K+)/Eu2+/Mn2+ based on efficient simultaneous energy transfer. The results indicate that Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ is a promising white light-emitting phosphor in WLEDs application.  相似文献   

20.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号