首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al–Mg–Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.  相似文献   

2.
A comprehensive study on the microstructural evolution of a new type Al–Zn–Mg–Cu–Er–Zr alloy during homogenization was conducted by optical microscope, scanning electron microscope, transmission electron microscopy and X-ray diffraction analysis. The results show that serious segregation exists in as-cast alloy, and the primary phases are T(AlZnMgCu), S(Al2CuMg) and Al8Cu4Er, which preferentially locate in the grain boundary regions. The soluble T(AlZnMgCu) and S(Al2CuMg) phases dissolve into the matrix gradually during single-stage homogenized at 465 °C with prolonging holding time, but the residual Al8Cu4Er phase cannot dissolve completely. Compared with the single-stage homogenization, both a finer particle size and a higher volume fraction of L12-structured Al3(Er, Zr) dispersoids can be obtained in the two-stage homogenization process. A suitable homogenization scheme for the present alloy is (400 °C, 10 h)+(465 °C, 24 h), which is consistent with the results of homogenization kinetic analysis.  相似文献   

3.
The effects of homogenization and isothermal aging treatment on the mechanical properties of Mg–12Gd–2Er–1Zn–0.6Zr(wt%) alloy were investigated. The precipitated long-period stacking order(LPSO) structure and the aging precipitation sequence of the conditioned alloys were observed and analyzed, respectively. The results indicate that the 14H-LPSO structure occurs after the homogenization treatment and the b0 phase forms after the isothermal aging process. These two independent processes could be controlled by the precipitation temperature range. The significant increase in the elongation of the as-cast alloy after homogenization treatment is attributed to the disappearance of the coarse primary Mg5(Gd, Er, Zn) phase and the presence of the 14H-LPSO structure. The precipitation sequence of the investigated alloy is a-Mg(SSS)/b00(D019)/b0(cbco)/b.Furthermore, the yield tensile strength(YTS) and ultimate tensile strength(UTS) values of the isothermal aging alloy have a great improvement, which could be attributed to the high density of the precipitated b0 phase.  相似文献   

4.
Processing by equal-channel angular pressing (ECAP) affects the morphology of η precipitates in an Al–Zn–Mg–Cu (Al-7136) alloy. It is shown by transmission electron microscopy that ECAP changes the orientation of precipitates and this influences the atomic configuration and the interfacial energy at the η/α-Al interfaces. Consequently, η precipitates adopt an isotropic growth mode and evolve into equiaxed particles. A three-dimensional atom probe analysis demonstrates that large η precipitates formed in different numbers of ECAP passes are of similar composition. The coalescence of smaller precipitates, rather than the fragmentation of larger precipitates, dominates the precipitate evolution.  相似文献   

5.
The microstructure evolution and strengthening mechanisms of Mg–10Gd–1Er–1Zn–0.6Zr (wt.%) alloy were focused in the view of the size parameters and volume fraction (fp) of dual phases (long period stacking ordered (LPSO) structures and β′ precipitates). Results show that two types of LPSO phases with different morphologies formed, and the morphology and size of both LPSO phases varied with the solution conditions. However, the volume fraction decreased monotonously with increasing solution temperature, which in turn raised the volume fraction of β′ phase during aging. The alloy exhibited an ultimate tensile strength of 352 MPa, a yield strength of 271 MPa, and an elongation of 3.5% after solution treatment at 500 °C for 12 h and aging at 200 °C for 114 h. In contrast to the LPSO phase, the β′ phase seems to play a more important role in enhancing the yield strength, and consequently, a decreased fLPSO/fβ′ ratio results in an increased yield strength.  相似文献   

6.
Al–3Cu–Mg alloy was fabricated by the powder metallurgy (P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents (0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope (OM) and scanning electron microscope (SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength (TRS) of sintered materials decreased with greater Mg content (Al–3Cu–2.5Mg). However, Al–3Cu–0.5Mg alloy exhibited moderate TRS but higher specific strength than Al–3Cu without Mg addition.  相似文献   

7.
The stress relaxation behavior of age-forming for an Al–Zn–Mg–Cu alloy was studied using a designed device that can simulate the age forming process. The mechanism of stress relaxation was also revealed through calculating thermal activation parameters and analyzing the microstructures. The results suggested that the stress relaxation behavior of the Al–Zn–Mg–Cu alloy in the simulated age-forming process can be divided into three stages according to the stress level. The three stages of stress relaxation are: (i) the initial high stress stage, (ii) the subsequent middle stress transition stage and (iii) the last low stress equilibrium stage, respectively. The deformation activation energies are 132 kJ/mol in the initial high stress stage, 119 kJ/mol in the subsequent middle stress transition stage and 91 kJ/mol in the last low stress equilibrium stage, respectively. The analysis of the thermal activation parameters and microstructures revealed that dislocation creep was the dominant deformation mechanism in the initial and subsequent stages of the stress relaxation; whereas diffusion creep is the mechanism in the last stage of the stress relaxation. Additionally, a special threshold stress phenomena was present in the stress relaxation of the age-forming process, which was scribed to the interaction between precipitation and dislocation in the Al–Zn–Mg–Cu alloy  相似文献   

8.
Microstructure and properties of aging Cu–Cr–Zr alloy   总被引:1,自引:0,他引:1  
The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.  相似文献   

9.
Abstract

This paper investigated the effect of different amounts of Ag addition on the microstructure, properties and precipitation processes of Al–4·6Cu–6·9Mg(wt-%) alloy using various analytical methods. It was found that Ag addition stimulated new X′ 9 and Ω phases precipitated finely and dispersively in the matrix, as a result of Mg–Ag co-clusters; the volume fraction of precipitates increased with the content of Ag addition. Such precipitation improved the mechanical performance of the Al–Cu–Mg alloy significantly. The mechanism for the formation of new precipitates is also described in this paper.  相似文献   

10.
《Acta Materialia》2008,56(5):985-994
The fatigue behavior of as-cast Mg–12%Zn–1.2%Y–0.4%Zr alloy has been investigated. The SN curve showed that the fatigue strength at 107 cycles was 45 MPa. Scanning electron microscopy observations on the surfaces of the failed and unfailed specimens (after up to 1 × 107 cycles) suggested that the slip bands could act as preferential sites for non-propagating fatigue crack initiation, and the I-phase could effectively retard fatigue crack propagation (FCP). The macro fracture morphology clearly indicated that the overall fracture surface was composed of three regions, i.e. a fatigue crack initiation region (Region 1), a steady crack propagation region (Region 2) and a tearing region (Region 3). High-magnification fractographs showed that only porosities can act as the crack initiation sites for all specimens. Moreover, for specimens with fatigue lifetimes lower than 2 × 105 cycles, the cracks mostly initiated at the subsurface or surface of the specimen. However, when the fatigue lifetime was equal to or higher than 2 × 105 cycles, the fatigue crack initiation sites transferred to the interior of the specimen. The maximum stress intensity factors corresponding to the transition sites between Regions 1, 2 and 3 were 2 and 4.2 MPa m1/2, respectively. When the maximum stress intensity factor Kmax was lower than 4.2 MPa m1/2, in the steady crack propagation region, due to the retarding effect of I-phase/α-Mg matrix interfaces, the fatigue cracks tended to pass the I-phase/α-Mg matrix eutectic pockets directly and propagated through the grain cells, resulting in the formation of many flat facets on the fracture surface. However, when the maximum stress intensity factor was higher than 4.2 MPa m1/2, in the sudden failure region, the rigid bonding of I-phase/α-Mg matrix interfaces was destroyed and the cracks preferentially propagated along the interfaces, which resulted in the fracture surface being almost completely composed of cracked I-phase/α-Mg matrix eutectic pockets. Based on microstructural observation and the fracture characteristics of the two regions, it is suggested that with an increase in crack tip driving force, the FCP mode changes from transgranular propagation to intergranular propagation.  相似文献   

11.
The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes εac of 0.4–1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin–Manson–Coffin equation with the parameters σ′/E = 0.014, b =–0.123, ε′f= 178.65, and c =–1.677.  相似文献   

12.
The effects of TiB2 and Zr on the microstructure, aging response and mechanical properties of hot-extruded Al–Zn–Mg–Cu based materials were investigated and compared by multi-scale microstructure characterization techniques. The results showed that proper addition of TiB2 particles could refine grain size during solidification, promote dynamic recrystallization during extrusion, and inhibit grain growth during solution treatment. Meanwhile, Zr addition had minor influence on the grain refinement during solidification, but could effectively suppress recrystallization and grain growth compared with the Zr-free alloy. Furthermore, the TiB2 addition could simultaneously enhance the aging kinetics and peak-aged hardness of the materials. Comparatively, Zr addition could also improve the peak-aged hardness with minor effect on the aging kinetics of the materials. Finally, the quench sensitivity, elastic modulus and tensile properties of the materials were compared and studied. Specifically, the relationship between the microstructure and mechanical properties, and the strengthening mechanisms were discussed in detail.  相似文献   

13.
14.
Solution treatment is a useful way to improve the degradation resistance of Mg alloys.In this work,effects of solution treatment temperature on mechanical and biodegradable properties of an extruded Mg–2Zn–1Gd–0.5Zr alloy were studied.Microstructure analysis,tensile test, three-point bending test, immersion test and electrochemical test were performed.The results showed that increasing solution temperature decreases the mechanical properties of the alloy.However, three-point bending test revealed that the solution-treated alloy at 510 ℃ could maintain 95% of its maximum bending force(F_(max)) during the 28-day immersion period.After treatment at 510 ℃ for 5 h, all the second phases were dissolved into the alloy, the galvanic corrosion was inhibited, and the alloy exhibited good corrosion resistance with a corrosion rate of 0.35 mm·year~(-1) in Hank's solution.  相似文献   

15.
16.
The effect of laser heat treatment on the corrosion properties of the 7075 aluminum alloy was studied electrochemically. Laser retrogression and re-aging (LRRA) is proposed to replace the retrogression treatment of retrogression and re-aging. Transmission electron microscopy was used to analyze the microstructure of the alloy. The corrosion of the alloy treated using different LRRA parameters was analyzed by scanning electron microscopy. Using the polarization and electrochemical impedance spectroscopy measurements, it was concluded that the best corrosion resistance was obtained by the alloy treated at 2 mm/s with a laser power of 650 W. The spacing between the precipitate-free zone and grain boundary precipitates increased. It is proved that the laser process can effectively improve the corrosion resistance of the 7075 alloy.  相似文献   

17.
In as-cast Mg–2.1Gd–1.1Y–0.82Zn–0.11Zr (mole fraction, %) alloy, lamellar microstructures that extend from grain boundaries to the interior of α-Mg grains are identified as clusters of γ′ using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector. Under a total strain-controlled low-cyclic loading at 573 K, the mechanical response and failure mechanism of Mg–2.1Gd–1.1Y–0.82Zn–0.11Zr alloy (T6 peak-aging heat treatment) were investigated. Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and 573 K. The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures and α-Mg matrix and extend along the basal plane of α-Mg. The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.  相似文献   

18.
The present work was undertaken to improve superplastic ductility of friction-stir welded joints of ultrafine-grained (UFG) Al–Mg–Sc–Zr alloy. In order to suppress the undesirable abnormal grain growth, which typically occurs in the heavily deformed base material, the UFG material was produced at elevated temperature. It was suggested that the new processing route could reduce dislocation density in the UFG structure and thus enhance its thermal stability. It was found, however, that the new approach resulted in a relatively high fraction of low-angle boundaries which, in turn, retarded grain-boundary sliding during subsequent superplastic tests. Therefore, despite the successful inhibition of the abnormal grain growth in the base-material zone, the superplastic deformation was still preferentially concentrated in the fully-recrystallized stir zone of the material. As a result, the maximal elongation-to-failure did not exceed 700%.  相似文献   

19.
The effects of the rare earth element Y addition on mechanical properties and energy absorption of a low Zn content Mg–Zn–Zr system alloy and the deformation temperature of optimized alloy were investigated by room tensile test, optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscope(TEM). The results show that,after homogenization at 420 °C for 12 h for the as-cast alloys, Mg Zn phase forms, which decreases the strength of Mg–2.0Zn–0.3Zr alloy with Y content of 0.9 wt%. The tensile strength and elongation of the alloy with a Y addition of 5.8 wt% reach the max value(281 ± 2) MPa and(30.1 ± 0.7) %, respectively; the strength and elongation of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reach(321 ± 1) MPa and(21.9 ± 0.7) %, respectively. The energy absorption increases with the increase of Y content, the max value reached 0.79 MJ m-3with Y content of 5.8 wt%, and the energy absorption of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reaches0.75 MJ m-3.  相似文献   

20.
The effects of Zn addition were examined by observing the microstructure and measuring the mechanical properties of Mg–xZn–2Sn–0.4Mn with different Zn contents. The addition of Zn to the Mg–2Sn–0.4Mn alloy caused the precipitation of secondary phases and an improvement in the mechanical properties. The aged alloys showed improved elongation at break, which led to a slight decrease in yield strength and ultimate strength. The results suggest that the formation of precipitates containing Zn affects the mechanical properties of the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号