首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Ce1–xTixO2 mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal (M = Pt, Rh, Ru) was used for soot oxidation. Ti-doped Ce1–xTixO2 catalysts (x is the molar ratio of Ti/(Ti + Ce) and ranges from 0.1 to 0.5) exhibit much better oxidation performance than CeO2 catalyst, and the Ce0.9Ti0.1O2 catalyst calcined at 500 °C has the best catalysis activity. Each noble metal (1 wt%) was supported on Ce0.9Ti0.1O2 (M/C9T1) and the properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, Brunauer–Emmett–Teller (BET) method, and H2-temperature programmed reduction (H2-TPR) results. Results show that the introduction of Ti into CeO2 forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface. The noble metal is highly dispersed over Ce0.9Ti0.1O2, and M/C9T1 catalysts present enhanced activity in comparison to Ce0.9Ti0.1O2. It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst. A small amount of Ti doping in CeO2 can significantly improve the activity of the catalyst, while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst, which hinders the contact and reaction between the catalyst and the soot.  相似文献   

2.
LaCoO3/tourmaline was prepared as catalysts on the methane catalytic combustion. As additive tourmaline, its effect on crystal growth and catalytic activity of LaCoO3, were investigated via X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), H2-temperature programmed reduction(H2-TPR) and catalyst evaluation techniques. SEM and TEM indicated that the spontaneous polarizability of tourmaline made LaCoO3 particles grow dispersedly on tourmaline, alleviated the agglomeration and exposed more reactive sites. It was a main influence leading to the improvement of catalysts activity, exposed via catalyst evaluation device. Among the different additive proportion of compound samples, the 2% tourmaline added LaCoO3 showed an obvious enhancement activity compared to non-tourmaline sample—the light-off temperature was 454 °C and CH4 reached the full conversion at 563 °C.  相似文献   

3.
Environmental contamination such as soot particles and NOx has aroused extensive attraction recently.However,the main challenge lies in the oxidation of soot at mild temperature with the assistance of NOx.Here,a series of core-shell MnCeOx catalysts were successfully synthesized by hydrothermal method and employed for low-temperature catalytic oxidation of soot in the presence of NOx.X-ray diffraction(XRD),inductively coupled plasma-optical emission sp...  相似文献   

4.
CuCe/CNTx-SAPO-34(x=0,0.5,1,2) with various CNT doping quantities were synthesized through the one-pot hydrothermal synthesis method using CNT and SAPO-34 as composite supporters.The selected CuCe/CNT1-SAPO-34 catalyst exhibits remarkable SCR activity and high H2O/SO2 resistance in a wide temperature range of 200-450℃.X-ray diffraction(XRD),N2 adsorption-desorption,scanning electron microscopy(SEM),X-ray photoelectro n spectroscopy(XPS),H  相似文献   

5.
CeO2,La2O3,and CeO2-Y2O3 oxides were coated on the surface of spherical granular AI2O3(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H2PtCl6·6H2O adsorption rates of the Al  相似文献   

6.
A series of Ce0.5Fe0.30Zr0.20O2 catalysts were prepared by different methods(co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrothermal method) and characterized by X-ray diffraction(XRD), Raman spectroscopy, Brunauer-Emmett-Teller(BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation(TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incorporated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases existed in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.2O2 catalyst presented the lowest Ti(251 °C, ignition temperature of soot oxidation) and Tm(310 °C, maximum oxidation rate temperature) for soot combustion(with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 °C for 10 h, the Ti and Tm were still relatively low, at 273 and 361 °C, respectively, indicating high catalytic stability.  相似文献   

7.
The catalytic oxidation performance toward ethylene oxide(EO) and the consequent mechanism were investigated on the Pt-Ru/CuCeOx bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorption and subsequent impregnation.The catalytic tests show that the introduction of Ru into the Pt catalyst,so as to form Pt-Ru bimetallic active sites,can greatly increase the oxidation activity of the catalyst,as evidenced by the extremely lower full oxidation temperature(1...  相似文献   

8.
A series of 3DOM CeMnO_3 perovskite catalysts were prepared by poly(methyl methacrylate) hardtemplating-excessive impregnation method at calcination temperature of x℃(x=600,700,800) and the heating rate of y ℃/min(y=1,2,5,10).The samples were characterized by Brunauer-Emmett-Teller method,scanning electron microscopy,transmission electron microscopy,H_2-temperature programmed reduction,X-ray photoelectron spectroscopy,X-ray diffraction,moreover,the effect of the calcination process on the catalytic activity of the samples were discussed by the catalytic combustion of toluene.The results show that the 3DOM CeMnO_3 catalysts calcined at 600℃ promote the formation of a perovskite structure,inhibit the reduction of the Mn~(4+) species in the catalyst with high temperature.The catalyst expresses the complete macroporous structure,large specific surface area(38.8 m~2/g),higher adsorption oxygen concentration and Mn~(4+) substance concentration,with a low T_(90%)=172℃.By preparing the catalysts at different calcination heating rates,it can be concluded that the catalyst possesses a high concentration of adsorbed oxygen and a low reduction temperature and a large specific surface area(40.42 m~2/g) greatly promotes adsorption stage catalytic oxidation reaction and catalytic combustion of toluene at low temperature under the heating rate of 5℃/min.When the heating rate is 1 ℃/min,the catalyst has a complete macroporous structure(250 nm),which is beneficial to the exchange of macromolecular substances during the catalytic reaction and the catalyst has a high concentration of lattice oxygen suitable for the catalysis of toluene in high temperature flue gas combustion.  相似文献   

9.
The MnXOx catalysts(i.e.,MnSmOx,MnNdOx,MnCeOx) were prepared by reverse co-precipitation method and used for NH3-SCR reaction.It is found that MnCeOx catalyst presents the best low tempe rature catalytic activity(higher than 90% NOx conversion in the te mperature range from 125 to 225℃)and excellent H2O+SO2 resistance.In order to explore the reason for this result,the characterization of X-ray diff...  相似文献   

10.
CexCoyCuz oxide composite catalysts were prepared by using polyethylene glycol, citrate sol–gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR), etc. The catalytic activity for o-xylene was investigated. The catalytic degradation pathway and mechanism of o-xylene were inferred. The results show that CeO2 is mainly present on the surface of all catalysts. The surface area of Ce2Co1Cu1 is up to 77.2 m2/g, and the average pore size is 10.62 nm. It exhibits redox and sufficient Ce4+ and Ce3+, and reactive oxygen species, and has maximum O–H and CO in the five catalyst samples. The catalytic activity of Ce2Co1Cu1 is the best at low temperature, with the T50 and T90 values of 235 and 258 °C at a space velocity of 32000 h?1, respectively. The o-xylene is oxidized to o-methyl benzaldehyde, and then further oxidized to o-methylbenzoic acid, and finally CO2 and H2O are formed.  相似文献   

11.
In this paper,CeO2 substrate was prepared by the sol-gel method,further CuO was introduced by adding the copper complexes with chelating agents into the sol-gel precursors of CeO2,in which different chelating agents(β-cyclodextrin,glucose and trimesic acid) were tried.This synthesis method helps the CuO species to disperse very uniformly in the CeO2 substrates.When the amount of copper oxide is up to33 mol%,the CuO/CeO2 samples can still maintain a hig...  相似文献   

12.
Hierarchical ZSM-5(HZ) molecular sieves based on fly ash were synthesized using a method combining water heat treatment with step-by-step calcination.The coupling catalysts between La_(1-x)Ce_xMn_(0.8)-Ni_(0.2)O_3(x ≤ 0.5) perovskites and HZ were prepared through the impregnation method,which were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),N_2 adsorption,X-ray photoelectron spectroscopy(XPS),NH_3-temperature programmed desoprtion(NH_3-TPD),H_2-temperature programmed reduction(H_2-TPR) and O_2-TPD techniques and investigated regarding pentanal oxidation at 120-390℃ to explore the effects of Ce doping on the catalytic activity and the active oxygen species of the coupling catalysts,meanwhile,the reaction mechanism and pathway of pentanal oxidation were also studied.The results reveal that Ce substitution at La sites can change the electronic interactions between all the elements and promote the electronic transfer among La,Ce,Ni,Mn and HZ,influencing directly the physicochemical characteristics of the catalysts.Moreover,the amount and transfer ability of surface adsorbed oxygen(O_2~-and O~-)regarded as the reactive oxygen species and the low temperature reducibility are the main influence factors in pentanal oxidation.Additionally,La_(0.8)Ce_(0.2)Mn_(0.8)Ni_(0.2)O_3/HZ exhibits the best catalytic activity and deep oxidation capacity as well as a better water resistance due to its larger amount of surface adsorbed oxygen species and higher low temperature reducibility.What's more,appropriate Ce substitution can significantly enhance the amount of O_2~-ions,which can distinctly enhance the catalytic activity of the catalyst,and moderate acid strength and appropriate acid amount can also facilitate the improvement of the pentanal oxidation activity.It is found that there is a synergic catalytic effect between surface acidity and redox ability of the catalyst.According to the in situ DRIFTS and GC/MS analyses,pentanal can be oxidized gradually to CO_2 and H_2 O by the surface oxygen species with the form of adsorption in air following the Langmuir-Hinshelwood(L-H) reaction mechanism.Two reaction pathways for the pentanal oxidation process are proposed,and the conversion of the formates to carbonates may be one of the main rate-determining steps.  相似文献   

13.
The metal oxides CuMnCe and CeY washcoats on cordierite were prepared using an impregnation method, and then used as support for the active Pt component to prepare the Pt/CuMnCe and Pt/CeY monolithic catalysts for the deep oxidation of VOCs. In comparison with the Pt/CeY, CuMnCe, and CeY monolithic catalysts, the Pt/CuMnCe monolithic catalyst shows an excellent performance for toluene,ethyl acetate,and n-hexane oxidation and the T_(90%) is low to 216, 200 and 260 ℃,respectively. The active components Pt/PtO and CuMnCe result in a better synergetic interaction, which promote the catalyst reducibility, increase the oxygen mobility, and enhance the adsorption and activation of organic molecules.  相似文献   

14.
The NO oxidation reaction was studied over MnOx-CeO2 catalysts prepared by co-precipitation, impregnation and mechanical mixing method, respectively. It was found that the co-precipitation was the most active and a 60% NO conversion was achieved at 250 °C. X-ray diffraction (XRD), Brumauer-Emmett (BET), H2-temperature programmed reduction (H2-TPR) and oxygen storage capacity (OSC) techniques were employed to characterize the physical and chemical properties of the catalysts. XRD results showed that amorphous MnOx or Mn-O-Ce solid solution existed in co-precipitation and impregnation prepared sample, while crystalline MnOx was found in mechanical mixing catalyst. A larger surface area was observed on co-precipitation prepared catalyst compared to those prepared by impregnation and mechanical mixing. The strong interaction between MnOx and CeO2 enhanced the reducibility of the oxides and increased the amount of Mn4+ and activated oxygen, which are favorable for NO oxidation to NO2.  相似文献   

15.
Constructing cerium and manganese bimetallic catalysts with excellent catalytic performance for soot combustion is the research frontier at present. In order to find out the key factors for catalytic soot combustion of Ce–Mn–O catalysts, a series of Ce–Mn–O catalysts with different Ce/Mn proportions were prepared by co-precipitation method. The activity test results show that it increases first and then decreases with the increase of Mn content. The best catalytic activity is obtained for Ce0.64Mn0.36 catalyst, which shows a maximum rate temperature (Tm) at 306 °C for CO2 production in TPO curve. Compared with non-catalytic soot combustion, the Tm decreases by more than 270 °C. Systematical characterization results suggest that when the adsorbed surface oxygen, lattice oxygen, specific surface area and total reduction amount of the catalysts reach a certain value, the key factors leading to the difference of catalytic activity become the readily reducible and highly dispersed surface manganese oxide species and contact performance of the external surface. The surface manganese oxide species is beneficial to improving the low-temperature reducibility of catalysts and the porous surface is conducive to the contact between catalyst and soot. Furthermore, for the soot combustion reaction containing only O2, the promoting effect of Mn4+ is not obvious.  相似文献   

16.
The kinetics of the oxygen exchange reaction between carbon dioxide and carbon monoxide were measured on iron, wüstite, and magnetite surfaces. This was done through the use of an isotope exchange technique. The measured rate constants are dependent on the oxygen activity. This dependence is expressed by ka = koaO−m. The parameter m was found to have values between 0 and 1. It was found that, in the iron region, the apparent rate constant was independent of the oxygen partial pressure (i.e., m = 0) at 1123 K (850 °C) and that it was inversely dependent on the oxygen partial pressure (i.e., m = 1) for the magnetite region at 1123 K (850 °C) and 1268 K (995 °C). In the wüstite region, m was found to be equal to 0.51, 0.66, and 1.0 for the w1, w2, and w3 pseudo phases, respectively, at 1268 K (995 °C). At 1123 K (850 °C), in wüstite, m was found to be equal to 0.59 and to 1.0 for the w1′ and w3′ pseudo phases, respectively.  相似文献   

17.
Pure nanocrystalline hematite (40 to 100 nm) compacts were prepared and sintered at various temperatures (300 °C to 600 °C) and then reduced with 100 pct H2 at 500 °C. On the other hand, fired compacts at 500 °C were reduced with a H2-Ar gas mixture containing different concentration of hydrogen (100, 75, 50, and 25 pct) at 500 °C using thermogravimetric techniques. Nanocrystalline Fe2O3 compacts were characterized before and after reduction with X-ray diffraction, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and reflected light microscope. It was found that the fired compacts at 400 °C to 600 °C have relatively faster reaction behaviors compared to that at lower firing temperature 300 °C. By decreasing the firing temperature to 300 °C, partial sintering with grain growth was observed clearly during reduction. Also, it was found that the reduction rate increased with increasing hydrogen content in the reducing gas. Comparatively, grain growth and partial coalescence took place during reduction with 25 pct H2 due to long reaction time.
M. BAHGAT (Researcher)Email:
  相似文献   

18.
To explore the feasibility of deep grain-size refinement in overcoming the problem of traditional Br-Hci trade-off in bulk permanent magnets, the effect of deformation temperature on the texture strength, grain refining, and magnetic properties of slow-deformed Nd-Fe-B magnets was systematically studied. As a result, strong textures with gradual grain refining from conventionally large size of DL = 650 nm to small nanoscale size of DL = 53 nm (DL denotes the lateral size of the aligned plate-like grains) are observed as the temperature reduces from Td = 650 °C to Td = 450 °C. Moreover, magnetic observations show a simultaneous increase in remanence and coercivity as the grain refines from DL = 650 nm to DL = 127 nm. The increase in coercivity results from the grain size refinement as well as the smaller aspect ratio of the plate-like grains, and the increase in remanence results from the improved texture homogeneity. As compared with the DL = 650 nm magnets, the simultaneous increase in remanence and coercivity leads to optimum enhancements of 57% in coercivity, 10% in remanence, and 25% in energy product, which demonstrate the feasibility of near-nanoscale grain refinement in overcoming the traditional Br-Hci trade-off for improved (BH)max values. The failure of higher coercivities in the DL ≤ 80 nm magnets is closely related with the defect effects of the grain boundaries. Mechanisms explaining the grain refining and texture changing behavior were also discussed.  相似文献   

19.
Phase relations and thermodynamic properties of the Cr-O system were studied at temperatures from 1500 °C to 1825 °C. In addition to Cr and Cr2O2, a third crystalline phase was found to be stable in the temperature range from 1650 °C to 1705 °C. The atomic ratio of oxygen to chromium of this phase, which decomposes upon cooling to form Cr and Cr2O3, was determined as 1.33 + 0.02, in good agreement with the formula Cr3O4. Temperatures and phase assem blages for invariant equilibria of the Cr-O system were determined as follows: Cr2O3 + Cr + Cr3O4, 1650 °C ± 2 °C; Cr3O4 + Cr + liquid oxide, 1665 °C ± 2 °C; and Cr3O4 + Cr2O3 + liquid oxide, 1705 °C ± 3 °C. The composition of the liquid oxide phase at the eutectic temperature of 1665 °C was found to be close to CrO. Relations between oxygen pressure and temperature for the univariant equilibria of the Cr-O system were established by equilibrating Cr and/or Cr2O3 starting materials in H2-CO2 mixtures of known oxygen potentials at temper atures from 1500 ΔC to 1825 °C. From this information, the standard free-energy changes (ΔGΔ) for various reactions were calculated as follows: 2Cr (s) + 3/2O2 = Cr2O3 (s): ΔG ° = -1,092,442 + 237.94T Joules, 1773 to 1923 K; 3Cr (s) + 2O2 = Cr2O4 (s): ΔG ° =-1,355,198 + 264.64T Joules, 1923 to 1938 K; and Cr (s) + l/2O2 = CrO (1): ΔG ° =-334,218 + 63.81T Joules, 1938 to 2023 K. Formerly Graduate Research Assistant, The Pennsylvania State University Formerly Professor  相似文献   

20.
Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized. It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80 °C and NOx conversion is stabilized over 90% in the wide temperature range of 100–260 °C. 0.1Nd–Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst. The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3. XPS results indicate that the optimal 0.1Nd–Mn/Ti sample possesses higher concentration of Mn4+ and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart. In situ DRIFTS show that the surface acidity is evidently increased after adding Nd, especially, the Lewis acid sites, and the intermediate (-NH2) is more stable. The reaction mechanism over Mn/Ti and 0.1Nd–Mn/Ti catalysts obey the Eley-Rideal (E-R) mechanisms under low temperature reaction conditions. H2-TPR results show that Nd–Mn/TiO2 catalyst exhibits better low-temperature redox properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号