首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of single Ce3+ doped and Ce3+ and Tb3+ co-doped Na2BaCa(PO4)2 (NBCP) phosphors was synthesized by conventional solid-stated reaction method. The crystal structure, luminescence properties, thermal stability and energy transfer were carefully investigated. Ce3+ is inferred to substitute the Ba2+ site in NBCP lattice. The color-tunable emission from blue to green is observed by adjusting Tb3+ concentration among NBCP:0.03Ce3+,yTb3+ phosphors. The energy transfer behavior from Ce3+ to Tb3+ ions is both illustrated by co-doped PL spectra and decay curves. The energy transfer efficiency is as high as 91.5%. The mechanism of energy transfer is resonance type of dipole-dipole transition. In this work, the optimal phosphor exhibits the excellent thermal stability which keeps at 94.9% of that initial value at room temperature when temperature reaches to 150 °C. The Ce3+ and Tb3+ co-doped NBCP phosphor is a promising candidate for the application in the general lighting and display fields.  相似文献   

2.
Near infrared to near infrared (NIR–NIR) photo-stimulated persistent luminescence (PSPL) has shown excellent potential in high-resolution bioimaging for deep tissues. However, the PSPL in NIR-Ⅱ region (900–1700 nm) is still lacking. In this work, Ca2Ga2GeO7:Yb3+,Tb3+ (CGGYT) phosphor with unique low-dimensional crystal structure was synthesized by high-temperature solid–state reaction. Thanks to the carriers transferring from deep traps to shallow ones induced by low energy light, the 978 nm PSPL originating from 2F5/2 to 2F7/2 transition of Yb3+ induced by multimode stimulating (980 nm or WLED) is successfully realized after pre-excited by UV lamp. The NIR PSPL of the specimen can be repeatedly stimulated after placed in dark for 12 h. Moreover, the results indicate that codoping with Tb3+ can significantly enhance the NIR-II PSPL owing to the quantum cutting persistent energy transfer (QC PET) from Tb3+ to Yb3+. Our study points to a new direction for the future development of multimode PSPL materials for bioimaging or multimode optical storage applications.  相似文献   

3.
In this work,combustion synthesis was used for the first time to fabricate a phosphor material with red emission for applications in solid-state white-light lamps.We synthesized a material with emission wavelength at λem=617 nm,excited under long UV-blue wavelength based on Eu3+,Tb3+-activated molybdates Li3Ba2(La1-x-yEuxTby)3(MoO4)8 with 0 ≤ x ≤1 and 0 ≤ y ≤ 1.A series of pow...  相似文献   

4.
CePO4:Tb3+ nanorods were successfully obtained via a simple hydrothermal method and combined with carbon dots (CDs) to obtain CDs@CePO4:Tb3+ nanorods. Due to the combination of CDs, the emission intensity of CDs@CePO4:Tb3+ nanorods increases about 92 times, compared with that of CePO4:Tb3+ nanorods. The combination of CDs and CePO4:Tb3+ nanorods was confirmed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and so on. The mechanism of luminescence enhancement may be attributed to some aspects: the formation of hexagonal phase results in the increase of crystal field symmetry, and the energy transfer among CDs, Ce3+ and Tb3+ ions, which causes the Tb3+ ions in CDs@CePO4:Tb3+ nanorods to obtain more excited energy and less non-radiative attenuation compared to CePO4: Tb3+ nanorods. The luminescence enhancement strategy through combination of CDs would provide a simple and effective approach for other rare earth ions doped luminescent materials.  相似文献   

5.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique, the crystalline structures of samples characterized by XRD, and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated. The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped. It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+, and Ce3+ was not luminous by itself. The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1, when excited at 310 nm, which was the characteristic adsorption wavelength of Ce3+.  相似文献   

6.
The NaYF4:yb3+,Tb3+ (Xyb: 0.20, XTb: 0.04) materials were prepared using the co-precipitation method, lne as-preparea material was washed either with or without water in addition to ethanol and thereafter annealed for 5 h at 500℃. This resulted in materials with moderate or very high up-conversion luminescence intensity, respectively. The structural study carried out with X-ray powder diffraction revealed microstrains in the rare earth (R) sublattice that were relaxed for the material with very high up-conversion intensity thus decreasing energy losses. The local structural details were investigated with R LⅢ and Y K edge ex- tended X-ray absorption fine structure (EXAFS) using synchrotron radiation. Around 10 tool.% of the Yb3+ ions were found to occupy the Na site in the material with very high up-conversion intensity. These Yb species formed clusters with the Tb3+ ions occupying the regular Na/R sites. Such clustering enhanced the energy transfer between Yb3+ and Tb3+ thus intensifying the up-conversion emission.  相似文献   

7.
In this paper, we report synthesis of pure SrMoO4, Sm3+ (1 at%–5 at%) doped SrMoO4 and Bi3+ (1 at%–3 at%) co-doped in 4 at% Sm3+ doped SrMoO4 (SrMoO4:4Sm3+) phosphors by solution combustion method. The X-ray diffraction (XRD) analysis reveals the tetragonal phase of all samples, also Bi3+ co-doping supports crystallite size growth and reduces lattice strain. Absorption analysis of Sm3+ doped SrMoO4 ascertains a decrease in band gap and Bi3+ co-doping confirms the emergence of an absorbance peak at around 308 nm attributed to Bi3+ energy levels. Photoluminescence (PL) analysis ascertains an increase in emission peaks for Sm3+ doped SrMoO4 up to 4% concentration, which are attributed to an electron transition from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2, and 11/2) energy levels of Sm3+ ions. We have explained the effects of Bi3+ co-doping on the luminescence of Sm3+ doped SrMoO4. The reduced microstrain and increased crystallinity of the phosphors as a result of Bi3+ co-doping and their correlation with the luminescence of Sm3+ ions are discussed.  相似文献   

8.
YbPO4:Tb3+ were synthesized by mild hydrothermal method. The luminescent properties, morphologies and structure of the obtained powders were characterized by photoluminescence (PL) spectra, FESEM, X-ray diffractometer (XRD) and FTIR. The results showed that the prepared YbPO4:Tb3+ nanoparticles were pure tetragonal phase and the average grain size varied with increasing of Tb3+ concentration. Hydrothermal temperature was revealed to be the key factor to enhance the emission intensity of YbPO4:Tb3+ phosphors. The spherical nanoparticles could be effectively excited by near UV (369 nm) light and exhibited green performance at 543 nm (5D47F5), 489 nm (5D47F6) and 586 nm (5D47F4). The CIE chromaticity was calculated to be x=0.298, y=0.560. The YbPO4:Tb3+ nanoparticles exhibited potential to act as UV absorber for solar cells to enhance the conversion efficiency.  相似文献   

9.
A series of Tb~(3+) and Eu~(3+) co-doped NaY(WO_4)_2 phosphors were synthesized by hydrothermal reactions.The crystal structure,morphology,upconversion luminescent properties,the energy transfer from Tb~(3+) to Eu~(3+)ions and the ~5 D_4→ ~7 F_5 transition of the Tb~(3+) ion in NaY(WO_4)_2:Tb~(3+),Eu~(3+) phosphors were investigated in details.The results indicate that all the synthesized samples are of pure tetragonal phase NaY(WO_4)2.Furthermore,the micrometer-sized needle spheres and excellent dispersion of the particles are obtained by adding polyethylene glycol(PEG-2000) as the surfactant.Phosphors of NaY(WO_4)_2:Tb~(3+),Eu~(3+) exhibit the492 nm blue emission peak,546 nm green emission peak,595 nm orange emission peak and 616 nm red emission peak under 790 nm excitation.The energy transfer from Tb~(3+) to Eu~(3+) is a resonant transfer,in which electric dipole-dipole interaction plays a leading role.By adjusting the doping concentration of Eu~(3+) in NaY(WO_4)_2: 1.0 mol%Tb~(3+),xmol%Eu~(3+) phosphors,the emitting color of UC phosphors can be tuned from green to red.  相似文献   

10.
In order to sensitize the luminescence of Eu3+ ions in heavy metal glass, zinc lead borate glass samples containing various concentrations of Eu3+ and Tb3+ ions were prepared to study the Tb3+ to Eu3+ non-radiative energy transfer phenomena. Energy level structures of Tb3+ and Eu3+ ions were plotted to show the excitation and energy transfer routes. Efficient energy transfer from Tb3+ to Eu3+ was observed and studied qualitatively in terms of doping concentrations. The sensitization turned out to be less effective than expected. Further studies to characterize the oxidation of Tb3+ into tetravalent state and to examine the mechanism of energy transfer are proposed.  相似文献   

11.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

12.
A series of single-phase and color-tunable phosphors Sr2La3(SiO4)3F:0.15Tb3+,xSm3+(SLSOF:0.15Tb3+,xSm3+) was prepared using solid-state route.The X-ray diffraction(XRD) was used to characterize the phase of the as-prepared samples.The synthesized phosphors have apatite-type structure without other impurities.Sm3+ and Tb3+ ions substitute La3+ into the lattice and form a single...  相似文献   

13.
Nanosized terbium doped Lu2O3 phosphors were synthesized via a modified co-precipitation processing.The as-prepared Tb:Lu2O3 phosphors was consisted of well crystallized nanosized sphere particles with a diameter of about 30 nnx Local structure of Tb ions in Lu2O3 lattice was investigated by an analytical approach based on Fourier transformation of the extended X-ray absorption fine structure(EXAFS) data.X-ray near edge structure (XANES) spectra suggested that all Tb ions doped were tervalonce.EXAFS results indicated that Tb ions have entered the Lu2O3 cubic lattice by means of solid solution.The coordination number and first shell Tb-O distance dropped with the increasing of Tb concentration.Emission spectra of the phosphors was shown to be typical for Tb3+ with main components at 542,550 and 490 nm,derived from irradiative relaxation of 5D4 level.The emission intensity decreased severely with the increasing of Tb concentration from 1 mol.% to 15 tool.%,suggesting a significant concentration quenching above 1 mol.% Tb.The reduction of emission intensity was interpreted by higher distortion derived relaxation among the surface state resident Tb3+ ions.  相似文献   

14.
Novel Nd3+/Yb3+ co-doped sodium calcium silicate glasses were prepared by melting quenching method:Spectroscopic study was carried out as a function of doping content by fixing sensitizer(Nd3+) concentration to 0.2 mol% and adjusting activator(Yb3+) from 0 to 1.0 mol%.The energy transfer(ET)mechanisms between Nd3+and Yb3+ are discussed based on their energy levels and excitation powerdependence emission intensity.Results show that...  相似文献   

15.
In this paper,effect of two strategies on afterglow behavior of Lu2O3:Eu single crystal scintillato r,Pr3+ codoping and solid solution with Sc2O3,were studied systematically.Two groups of Lu2O3:5 at%Eu,x at%Pr(x=0,0.2,0.5,1,2 and 5) and(Lu1-yScy)2O3:5 at%Eu(y=0,20 at%,50 at% and 70 at%) single crystals were grown by floating zone(FZ) method in air atmosphere.The structures of ...  相似文献   

16.
Rare earth(Ⅲ) diphenyl-4-amine sulfonates(RE(DAS)_3·xH_2O,RE=Eu~(3+),Tb~(3+))phosphors were synthesized by precursor method from barium diphenyl-4-amine sulfonate and rare earth sulfates.FTIR,TG/DSC coupled to mass spectrometry(TG/DSC/MS),X-ray powder diffraction(XPD),scanning electron microscopy(SEM) and photo luminesce nce(PL) spectroscopy were utilized to structurally and morphologically characterize the samples.Thermal decomposition of Eu(DAS)_3·7H_2O and Tb(DAS)_3·2H_2O at 973 K under dynamic air atmosphere results in crystalline Eu_2O_2SO_4 and Tb_2O_2SO_4 materials,respectively.Accordingly,MS spectra reveal the liberation of thermal decomposition products of precursors,largely as CO_2,NO_2 and SO_2 gases.The diphenyl-4-amine sulfonate(DAS) ligand demonstrats a good stabilizing property for Eu~(3+) and Tb~(3+) ions.The Eu(DAS)_3·7H_2O and Tb(DAS)_3·2H_2O compounds display efficient red and green emissions,under UV excitation,arising from the ~5D_0→~7F_J(J=0-4) and ~5D_4→~7F_J(J=0-6) transitions of the Eu~(3+) and Tb~(3+) ions,respectively.  相似文献   

17.
Zirconium metal–organic frameworks ZrOBDC (where BDC = C6H4(COOH)2, terephthalic acid) doped and co-doped with rare earth ions Ln (ZrOBDC:Ln3+, where Ln3+ = Eu3+ and Tb3+ as well as Er3+ and Yb3+) were used as precursors for the design of tetragonal rare earth doped zirconia nanoparticles (t-ZrO2:Ln3+ NPs) through annealing process. Preparation, characterization and luminescence properties of ZrOBDC:Ln3+ and ZrO2:Ln3+ NPs were investigated. The as-obtained t-ZrO2:Ln3+ NPs have high purity with an average size of 20–30 nm. The luminescence spectra of ZrOBDC:Tb3+ and ZrOBDC:Eu3+ display strong green and red emission at around 544 and 611 nm which correspond to 5D4 → 7F5 and 5D0 → 7F2 transitions of Tb3+ and Eu3+ ions, respectively. The green and red up-conversion emissions of ZrO2:Er3+,Yb3+ NPs due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions are observed under 976 nm laser excitation.  相似文献   

18.
The(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3(x= 0.005-0.07) phosphors were synthesized by the co-precipitation method,using ammonium bicarbonate as a precipitant.The combined technologies of FT-IR,XRD,FESEM,PLE/PL and photo luminescence decay analysis were used to study the phase evolution,morphologies and luminescent properties.The phosphors with good dispersion exhibit strong vivid red emission located at 617 nm(~5 D_0-~7 F_2 transition of Eu~(3+)) under the optimal excitation wavelength of 275 nm(~4 f~8-4 f~75 d~1 transition of Tb~(3+),~8 S_(7/2)→6~I_J transition of Gd~(3+)).The presence of Gd~(3+) and Tb~(3+) excitation bands on the PLE spectra monitoring the Eu~(3+) emission directly gives an evidence of Tb~(3+) → Eu~(3+) and Gd~(3+) → Eu~(~(3+)) energy transfer,The emission intensity varies with the Eu~(3+) amount,and the quenching concentration is ~5 at% which is close to the calculated value.The quenching mechanism is determined to be the exchange reaction between Eu~(3+).The temperature-dependent PL analysis indicates that the best(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 sample possesses good thermally stable properties.All the(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3 phosphors in this work have similar CIE chromaticity coordinates and color temperatures,which are(0.65 ± 0.02,0.35 ± 0.02) and ~2558 K,respectively.Fluorescence decay analysis shows that the lifetime for~617 nm emission decreases with the content of Eu~(3+) and temperature increasing.Owing to the Tb~(3+)→ Eu~(3+) energy transfer,the luminescent properties of the(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 phosphors are superior to the single Eu~(~(3+)) doped sample(Gd_(0.95)Eu_(0.05))AlO_3.As a result,the prepared phosphors may be widely used in solid-state display and light emitting devices.  相似文献   

19.
We reported magnetooptical properties of Eu3+(4f(6)) and Tb3+(4f(8)) in single crystals of Gd3Ga5O12 (GGG), Y3Ga5O12 (YGG), and Eu3+(4f(6)) in Eu3Ga5O12 (EuGG) for both ions occupying sites of D2 symmetry in the garnet structure. Absorption, luminescence, and magnetic circular polarization of luminescence (MCPL) spectra of Tb3+ in GGG and YGG and absorption and magnetic circular dichroism (MCD) of Eu3+ in EuGG were studied. The data were obtained at 85 K and room temperature (RT). Magnetic susceptibility of Eu3+ in EuGG was also measured between 85 K and RT. The magnetooptical and magnetic susceptibility data were modeled using the wavefunctions of the crystal-field split energy (Stark) levels of Eu3+ and Tb3+ occupying D2 sites in the same garnets. The results reported gave a precise determination of these Stark level assignments and confirmed the symmetry labels (irreducible representations) of the closely-spaced Stark levels (quasi-doublets) found in the 5D1 (Eu3+) and 5D4 (Tb3+) multiplets. Ultraviolet (UV) excitation (<300 nm) of the 6PJ and 6IJ states of Gd3+ in the doped GGG crystals led to emission from 5D4 (Tb3+) and 5D1 and 5D0 (Eu3+) through radiationless energy transfer to the 4f(n-1)5d band of Tb3+ and to UV quintet states of Eu3+. The temperature-dependent emission line shapes and line shifts of the magnetooptical transitions excited by UV radiation suggested a novel way to explore energy transfer mechanisms in this rare-earth doped garnet system.  相似文献   

20.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号