首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to effectively improve the afterglow properties of CaAl_2 O_4:Eu~(2+),Nd~(3+) phosphors,a series of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)(x=0,0.012,0.024,0.036,0.048,0.060 mol) phosphors were prepared by a high-temperature solid-phase approach.Crystalline composition and microstructure were characterized by XRD,TEM,HRTEM,and XPS,luminescence properties were systematically analyzed by fluorescence spectra,afterglow decay curves and TL glow curve.Results show that all of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)phosphors belong to monoclinic CaAl_2 O_4,without other cystalline phase.The blue emission at 442 nm is observed,which is assigned to the 4 f~65 d→4 f~7 transition of Eu~(2+) ions.Doping with appropriate amount of Gd~(3+) ions(x=0.036 mol) significantly improves the afterglow properties of phosphors,but the excessive doping of Gd~(3+) induces the fluorescent quenching.The doping of moderate Gd3+changes the traps states,the trap depth varies from 0.598 to 0.644 eV and the trap concentration is also greatly improved,thus significantly improving afterglow performance.  相似文献   

2.
The BaGd_(2-2 x)Eu_(2 x)O_4(BG, x = 0.01-0.09) phosphors were successfully synthesized via the sol-gel method,and BaY_(2-2 y)Eu_(2 y)O_4(BY, y = 0.005-0.07) phosphors were included for comparison. The pure phase BG phosphors with the ordered CaFe_2 O_4-type structure are obtained by annealing at 1300℃ for5 h. The phosphors with uniform particle size of 120 nm and good dispersion display typical Eu~(3+)emission with the strongest peak at 613 nm(~5 D_0→~7 F_2 transition of Eu3+) under optimal excitation band at 262 nm(CTB band). The presence of Gd~(3+) excitation bands on the PLE spectra monitoring the Eu3+emission directly proves an evidence of Gd~(3+)-Eu~(3+) energy transfer. Owing to the concentration quenching, the optimum content of Eu3+ addition is 5 at%(x = 0.05), and the quenching mechanism is determined to be the exchange reaction between Eu3+. All the BG samples have similar color coordinates and temperature of(0.64 ± 0.02, 0.36 ± 0.01) and 2000 ± 100 K,respectively. The lifetime value of BaGd_(1.9)Eu_(0.1)O_4 for 613 nm is fitted to be 2.19 ± 0.01 ms, and the Eu~(3+) concentration does not change the lifetime significantly. Owing to the Gd~(3+)-Eu~(3+) energy transfer, the luminescent intensity of the BaGd_(1.9)Eu_(0.1)O_4 phosphor is better than BY system. The BG system served as a new type of phosphor is expected to be widely used in lighting and display areas.  相似文献   

3.
Gd2InSbO7:Eu3+ red phosphors were successfully synthesized via high-temperature solid–state reaction. The phase purity, particle size, and luminescence properties of obtained phosphors were measured and analyzed in detail. The Gd2InSbO7 lattice possesses cubic structure with Fd-3m (227) space group. The phosphors emit bright red emission at 628 nm under 393 nm excitation, and this phenomenon is attributed to the 5D07F2 transition. The Judd–Ofelt parameters (Ω2, Ω4), transition ratio, and branching ratios (β) of Eu3+-doped Gd2InSbO7 phosphor were calculated on the basis of the emission spectra and decay lifetimes. The optimal content in Gd2InSbO7:xEu3+ is identified to be 15 mol%. The thermal quenching of Gd2InSbO7:Eu3+ is found to be over 500 K, and its activation energy is 0.26 eV. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of Gd2InSbO7:15%Eu3+ are (0.629, 0.371), which are close to ideal red chromaticity coordinates (0.670, 0.330). The fabricated w-LED exhibits good color rendering index (Ra) (86), correlated color temperature (CCT) (6997 K), and CIE chromaticity coordinates (0.302, 0.330). The obtained results demonstrate that Gd2InSbO7:Eu3+ phosphors have potential applications in white LEDs.  相似文献   

4.
The(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3(x= 0.005-0.07) phosphors were synthesized by the co-precipitation method,using ammonium bicarbonate as a precipitant.The combined technologies of FT-IR,XRD,FESEM,PLE/PL and photo luminescence decay analysis were used to study the phase evolution,morphologies and luminescent properties.The phosphors with good dispersion exhibit strong vivid red emission located at 617 nm(~5 D_0-~7 F_2 transition of Eu~(3+)) under the optimal excitation wavelength of 275 nm(~4 f~8-4 f~75 d~1 transition of Tb~(3+),~8 S_(7/2)→6~I_J transition of Gd~(3+)).The presence of Gd~(3+) and Tb~(3+) excitation bands on the PLE spectra monitoring the Eu~(3+) emission directly gives an evidence of Tb~(3+) → Eu~(3+) and Gd~(3+) → Eu~(~(3+)) energy transfer,The emission intensity varies with the Eu~(3+) amount,and the quenching concentration is ~5 at% which is close to the calculated value.The quenching mechanism is determined to be the exchange reaction between Eu~(3+).The temperature-dependent PL analysis indicates that the best(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 sample possesses good thermally stable properties.All the(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3 phosphors in this work have similar CIE chromaticity coordinates and color temperatures,which are(0.65 ± 0.02,0.35 ± 0.02) and ~2558 K,respectively.Fluorescence decay analysis shows that the lifetime for~617 nm emission decreases with the content of Eu~(3+) and temperature increasing.Owing to the Tb~(3+)→ Eu~(3+) energy transfer,the luminescent properties of the(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 phosphors are superior to the single Eu~(~(3+)) doped sample(Gd_(0.95)Eu_(0.05))AlO_3.As a result,the prepared phosphors may be widely used in solid-state display and light emitting devices.  相似文献   

5.
Red emitting phosphors play a significant role in accelerating the improvement of illumination quality for white light emitting diodes (WLEDs). In this work, by using solid-state reaction method, an efficient novel Ba2LuNbO6:Eu3+ phosphor with double-perovskite structure was successfully prepared. Here, a series of Ba2LuNbO6:Eu3+ red phosphors can be efficiently pumped by the near-ultraviolet (UV) light and then present high-brightness at orange emission (598 nm, 5D07F1) and red emission (610 nm, 5D07F2). The ratio values of 610 to 598 nm in Ba2LuNbO6:Eu3+ phosphors exceed 1 when the content of Eu3+ is larger than 0.4 mol, because the occupation of Eu3+ ions is changed from Lu3+ ions with symmetric sites to Ba2+ ions with asymmetric sites. Besides, the optimized concentration of Eu3+ at the 5D07F2 transitions is obtained when x = 1, indicating that there is non-concentration quenching in Ba2LuNbO6:Eu3+ phosphors. Moreover, the CIE chromaticity coordinates of Ba2LuNbO6:Eu3+ was calculated to be (0.587, 0.361), the color purity was calculated to be 72.26% and internal quenching efficiency (IQE) was measured to be 67%. Finally, the thermal stability of Ba2LuNbO6:Eu3+ phosphors was also studied. Our work demonstrates that the novel double-perovskite red-emitting Ba2LuNbO6:Eu3+ phosphors are prospective red emitting elements for WLEDs applications.  相似文献   

6.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

7.
In this work,combustion synthesis was used for the first time to fabricate a phosphor material with red emission for applications in solid-state white-light lamps.We synthesized a material with emission wavelength at λem=617 nm,excited under long UV-blue wavelength based on Eu3+,Tb3+-activated molybdates Li3Ba2(La1-x-yEuxTby)3(MoO4)8 with 0 ≤ x ≤1 and 0 ≤ y ≤ 1.A series of pow...  相似文献   

8.
Here, we report a series of Bi3+-doped Ba2Y1–xScxNbO6 (0 ≤ x ≤ 1.0 mol) phosphors by using the traditional high temperature solid-state reaction. To achieve the structural and photoluminescent (PL) information, several experimental characterizations and theoretical calculations were carried out, including X-ray diffraction (XRD), Rietveld refinement, UV-visible diffuse reflectance and PL spectra, temperature dependent PL spectra, and density functional theoretical (DFT) calculations. The XRD results show that the Bi3+-doped Ba2Y1–xScxNbO6 samples belong to the double-perovskite phase with a cubic space group of Fm3?m, and the diffraction positions shift toward high diffraction angle when the larger Y3+ ions are gradually replaced by the smaller Sc3+ ions. In addition, the refined XRD findings show that the Bi3+ ions tend to substitute the Y3+ and Sc3+ sites in the Bi3+-doped Ba2Y1–xScxNbO6 (0 < x < 1.0 mol) solid solutions. The PL spectra show that the emission positions of the solid solution samples tune from 446 to 497 nm with the increase of Sc3+ content, which can be attributed to the modification of crystal field strength around Bi3+ ions. Moreover, there is energy transfer from the Ba2YNbO6 host to Bi3+ ions, which is dominated by a resonant type via a dipole-quadrupole (d-q) interaction. The Ba2Y0.6Sc0.4NbO6:0.02 molBi3+ shows the strongest PL intensity under 365 nm excitation, with the best quantum efficiency (QE) of 68%, and it keeps 60% of the room temperature emission intensity when the temperature increases to 150 °C, meaning that the Ba2Y0.6Sc0.4NbO6:Bi3+ features excellent thermal quenching of luminescence. By combining this optimal sample with a commercial red-emitting Sr2Si5N8:Eu2+ phosphor, and a commercial 365 nm UV LED chip, a white LED device, with the color temperature (CT) of 3678 K, color rendering index (CRI) of 67.9, and CIE coordinates at (0.371, 0.376), is achieved.  相似文献   

9.
Green emitting Eu2+-doped (Ba3_xSrx)Si6012N2 solid solutions were synthesized through solid state reaction at 1350 ℃ for 10 h under a N2/H2 atmosphere. The XRD patterns revealed that the solid solution series of (Ba3 x-ySrx)Si6Ol2N2:yEu2+ with x value ranging from 0-0.6 were established. An efficient and intense tunable green light was observed by varying the cation Sr/Ba ratio. The emission spectra exhibited an entire shift towards long wavelength with increasing ofx value, which was caused by large crystal field splitting and Stokes shift. The x value dependence of emission intensity was discovered and explained by the enhanced probability of electron from excited 4f state to 5d ground state via nonradioactive transition. Highly thermal stability and feasible color coordinates were verified. White LEDs with excellent photochromic properties were fabricated by packing GaN based blue chips and (Ba Sr)3Si6012N2:Eu2+ phosphors. All results indicated that the (Ba3_xSrx)SirO12N2:Eu2+ phosphors were confirmed to be a promising candidate for pc-white LEDs in solid state lighting.  相似文献   

10.
Single phase of BaGd0.9-xMxEu0.1B9O16 (M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence (PL) properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively. The one at about 242 nm originated from the charge transfer band (CTB) of O2-→Eu3+. The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+ (RE=Gd, Eu), and the charge transfer transition of O2-→Gd3+. The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu3+. When excited with 254 nm, the integral emission intensity of Eu3+ increased after Al3+ or Sc3+ substituting Gd3+ partly in BaGd0.9Eu0.1B9O16. Under 147 nm excitation, the integral emission intensity of Eu3+ decreased after some Gd3+ was replaced by Sc3+, but increased after adding appropriate Al3+ into BaGd0.9Eu0.1B9O16.  相似文献   

11.
A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.  相似文献   

12.
A series of reddish orange phosphors Ba_3Gd_(1-x)(PO_4)_3:xSm~(3+)(x = 0.02.0.04,...,0.12) were prepared by the high-temperature solid-state reaction. X-ray powder diffraction(XRD) and diffuse reflectance and photoluminescence spectra were utilized to characterize the structure and spectral properties of the phosphors. The phosphors have strong absorption in the near-UV region. CIE chromaticity coordinates of the phosphors are located in the reddish orange region since the strongest emission band is around 598 nm and related to the ~4 G_(5/2)→~6 H_(7/2) transition of Sm~(3+). Optimal concentration of Sm~(3+) in the phosphors is about 6.0 at%. The quantum yield of the Ba_3Gd_(0.94)(PO_4)_3:0,06 Sm~(3+) under excitation at 403 nm is about 52.07%. Temperature dependent photoluminescence spectra of the Ba_3Gd_(0.94)(PO_4)_3:0.06 Sm~(3+) were measured and the phosphor exhibits high thermal stability of emission. All the results show that the Ba_3Gd(PO_4)_3:Sm~(3+) phosphor may be a potential red phosphor for near-UV based white LEDs.  相似文献   

13.
La2Mg1-x/2Zr1-x/2O6:xBi3+(x=0.01-0.035,abbreviated as LMZ:Bi3+) and La2-yMg0.99Zr0.99O6:0.02Bi3+,yEu3+(y=0.1-0.11,abbreviated as LMZ:Bi3+,Eu3+) double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi3+(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range be...  相似文献   

14.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

15.
This work presents the synthesis of Y2O3:Eu3+,xCa2+ (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, 7 mol%, 9 mol%, 11 mol%) nanophosphors with enhanced photoluminescence properties through a facile solution combustion method for optoelectronic, display, and lighting applications. The X-ray diffraction (XRD) patterns of the proposed nanophosphor reveal its structural properties and crystalline nature. The transmission electron microscope (TEM) results confirm the change in the shape of the particle and aggregation of particles after co-doping with Ca2+. Fourier transform infrared spectroscopy (FTIR) and Raman vibrations also confirm the presence of Y–O vibration and subsequently explain the crystalline nature, structural properties, and purity of the samples. All the synthesized nanophosphors samples emit intense red emission at 613 nm (5D07F2) under excitation with 235, 394 and 466 nm wavelengths of Eu3+ ions. The photoluminescence (PL) emission spectra excited with 235 nm illustrate the highest emission peak with two other emission peaks excited with 466 and 394 nm that is 1.4 times higher than 466 nm and 1.9 times enhanced by 394 nm wavelength, respectively. The emission intensity of Y2O3:Eu3+,xCa2+ (5 mol%) is increased 8-fold as compared to Eu:Y2O3. Doping with Ca2+ ions enhances the emission intensity of Eu:Y2O3 nanophosphors due to an increase in energy transfer in Ca2+→Eu3+ through asymmetry in the crystal field and by introduction of radiative defect centers through oxygen vacancies in the yttria matrix. It is also observed that the optical band gap and the lifetime of the 5D0 level of Eu3+ ions in Y2O3:Eu3+,xCa2+ nanophosphor sample gets changed with a doping concentration of Ca2+ ions. Nanophosphor also reveals high thermal stability and quantum yield as estimating activation energy of 0.25 eV and 81%, respectively. CIE, CCT, and color purity values (>98%) show an improved red-emitting nanophosphor in the warm region of light, which makes this material superior with a specific potential application for UV-based white LEDs with security ink, display devices, and various other optoelectronics devices.  相似文献   

16.
Cubic phase Tm3+/Yb3+:Y2O3 and Tm3+/Yb3+/Gd3+:Y2O3 phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm3+ to Gd3+ion.Characteristic emission bands from Tm3+ are also observed in both the phosphors....  相似文献   

17.
A series of new double perovskite La2–xEuxCaSnO6 (0 ≤ x ≤ 0.8) red phosphors were synthesized by traditional solid-state reaction. The phase, microstructure, photoluminescence (PL) properties, quantum efficiency, and thermal stability of the phosphors were investigated. La2CaSnO6 matrix has a monoclinic double perovskite structure with space group P21/n. Under near-ultraviolet (UV) light at 395 nm, La2–xEuxCaSnO6 phosphors exhibit the most typical red emission peak at 614 nm, which corresponds to 5D07F2 electric dipole transition of Eu3+. The optimum Eu3+ doping content is attained at x = 0.5, and the La1.5Eu0.5CaSnO6 phosphor shows a moderate quantum efficiency (32.3%) and high color purity (92.2%). Besides, the temperature-dependent spectrum of the phosphor was studied. The emission intensity of Eu3+ at 423 K decreases to 70.94% of the initial intensity at 303 K, and the activation energy ΔE is estimated to be 0.232 eV, suggesting that the phosphors possess good thermal stability. The fabricated w-LED based on the phosphors has higher Ra (89), lower CCT (4539K), and better chromaticity coordinates (0.371, 0.428). These results prove that the Eu3+-doped La2CaSnO6 red phosphor has great potential applications in w-LEDs.  相似文献   

18.
Thermal annealing of YOH1.1F1.9 and YOH1.1F1.9:Ln3+(Ln3+=Eu3+,Tb3+ and Gd3+) precursors in air gave access to synthesize yttrium oxyfluoride phosphors with well-preserved needle-like morphologies. The phase purities of samples strongly depended on the thermal annealing temperature. At 600 °C, pure Y5O4F7 with orthorhombic structure were obtained, as evidenced by powder X-ray diffraction measurement and chemical analysis. The interesting microstructure evolution of the annealed sample from well-organized nanoparticles on curly slices to microrod-bundle structure had been aroused by raising annealing temperature. The multicolor fluorescent emissions of Y5O4F7:Ln3+ phosphors were observed, e.g. ultraviolet emission for Gd3+ , green emission for Tb3+ and red emission for Eu3+ , which resulted from characteristic transitions of different lanthanide ions.  相似文献   

19.
A series of new oxyapatite red phosphors Ca3Y7(BO4)(SiO4)5O doped with different concentrations of Eu3+ were successfully synthesized by high temperature solid state method. The X-ray diffraction (XRD) Rietveld refinement results show that the structure of the phosphor belongs to space group P63/m and Eu3+ ion replaces Y3+ ion. The emission spectrum consists of the characteristic emission peaks corresponding to Eu3+ under the excitation of 274 nm and the dominant emission peak is at 614 nm (5D07F2 of Eu3+). The concentration quenching effect occurs and the optimized Eu3+ concentration is 4.0 mol%. The energy level diagram for luminous mechanism is also given and the non-radiative energy transfer mechanism between Eu3+ is mainly exchange interaction. The CIE coordinate is close to the ideal red light and the color purity is higher than 99.79%. Moreover, the phosphor exhibits moderate thermal stability because the photoluminescence intensity at 423 K is still maintained at higher than 78.97% of that at room temperature. The internal quantum efficiency of Ca3Y7(BO4)(SiO4)5O:4.0 mol%Eu3+ phosphor is 58.2%. A red light emitting diode (LED) device based on it can emit bright red light. The CCT values of the device are basically unchanged when driven by various bias current. The results show that Ca3Y7(BO4)(SiO4)5O:Eu3+ is a new type of oxyapatite red fluorescent material with good comprehensive performances.  相似文献   

20.
Commercial phosphors always require fewer impurities and higher crystallinity, but sometimes it is difficult or strict to synthesize a pure phase compound. Indeed, if the practical application is not influenced, it is acceptable to synthesize a kind of phosphors with diphase matrix that have similar structure and photoluminescence properties. In present work, we designed and synthesized a series of(1-x)BaMSiO_4·xBa_2 MSi_2 O_7:Eu(M = Zn~(2+), Mg~(2+)) diphase phosphors which contained two phases BaMSiO_4(hexagonal, P63) and Ba2 MSi_2 O_7(monoclinic, C2/c) by a high temperature solid-state reaction in air condition. The structures and luminescence properties related to the phase transform from BaMSiO_4 to Ba_2 MSi_2 O_7 were analyzed carefully. The results show that the self-reduction ability of Eu~(3+) is not the best in above four compounds, respectively. But it reaches the maximum and gets the green emission under the UV lamp when the matrix is in a proper ratio of two phases, which suggests that the heterostructure between the two crystals(BaMSiO_4 and Ba_2 MSi_2 O_7) improves the self-reduction process of the diphase.The possible mechanism of the tunable europium valence and the luminescent properties in(1-x)BaMSiO_4·xBa2 MSi_2 O_7:Eu phosphors were discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号