首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i. e. , slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.  相似文献   

2.
基于小波神经网络监测刀具状态的研究   总被引:2,自引:0,他引:2  
针对切削过程中振动信号和AE信号的特点,提出一种基于小波分析和BP神经网络的刀具磨损监测系统。该系统能融合振动和AE信号的特征,描述信号特征与刀具状态的非线性关系,以此识别刀具状态。试验表明基于小波神经网络的刀具磨损状态监剩系统是有效的。  相似文献   

3.
本文提出了基于智能融合技术进行铣刀磨损量监测和预测方法。利用多传感器对切削力和振动信号进行监测,通过频率变换提取切削力特征量,采用小波包分解技术提取振动信号特征量。通过信号特征值的组合,分别探讨了几种计算智能数据融合技术-小波神经网络、遗传神经网络、遗传小波神经网络对刀具磨损量的预测效果。实验分析表明,本文提出的几种计算智能数据融合技术均能够有效地完成刀具磨损量预测。  相似文献   

4.
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.  相似文献   

5.
小波包分析在刀具声发射信号特征提取中的应用   总被引:4,自引:0,他引:4  
分析了刀具的切削状态,介绍了刀具的声发射信号检测系统和小波、小波包分析技术,以及小波包频带能量分解方法,提出了小波包分解功率监测特征量提取技术.通过在刀具声发射的一个实例信号中的应用,有效地区分了刀具的两种切削状态,验证了小波包分解功率监测特征量提取方法的可行性.  相似文献   

6.
研究了数控刀具切削过程中声发射(AE)信号的产生机理和特点,提出了利用小波分解和小波包分解技术提取AE信号特征参数的方法监测刀具的磨损状态,并通过实例验证了该方法在刀具磨损监测中的可行性.  相似文献   

7.
This paper proposes a new method to detect the boundary of speech in noisy environments. This detection method uses Haar wavelet energy and entropy (HWEE) as detection features. The Haar wavelet energy (HWE) is derived by using the robust band that shows the most significant difference between speech and nonspeech segments at different noise levels. Similarly, the wavelet energy entropy (WEE) is computed by selecting the two wavelet energy bands whose entropy shows the most significant speech/nonspeech difference. The HWEE features are fed as inputs to a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for classification. The RSEIT2FNN is used because it uses type-2 fuzzy sets, which are more robust to noise than type-1 fuzzy sets. The recurrent structure in the RSEIT2FNN helps to remember the context information of a test frame. The RSEIT2FNN outputs are compared with a parameter threshold to determine whether it is a speech or nonspeech period. The HWEE-based RSEIT2FNN detection was applied to speech detection in different noisy environments with different noise levels. Comparisons with different detection methods verified the advantage of the proposed method of using HWEE.  相似文献   

8.
Real-time identification and monitoring of tool-wear in shop-floor environments is essential for the optimization of machining processes and the implementation of automated manufacturing systems. This paper analyzes the signals from an acoustic emission sensor and a power sensor during machining processes, and extracts a set of feature parameters that characterize the tool-wear conditions. In order to realize real-time and robust tool-wear monitoring for different cutting conditions, a sensor-integration strategy that combines the information obtained from multiple sensors (acoustic emission sensor and power sensor) with machining parameters is proposed. A neural network based on an improved backpropagation algorithm is developed, and a prototype scheme for the real-time identification of tool-wear is implemented. Experiments under different conditions have proved that a higher rate of tool-wear identification can be achieved by using the sensor integration model with a neural network. The results also indicate that neural networks provide a very effective method of implementing sensor integration for the on-line monitoring of tool abnormalities.  相似文献   

9.
One of the big challenges in machining is replacing the cutting tool at the right time. Carrying on the process with a dull tool may degrade the product quality. However, it may be unnecessary to change the cutting tool if it is still capable of continuing the cutting operation. Both of these cases could increase the production cost. Therefore, an effective tool condition monitoring system may reduce production cost and increase productivity. This paper presents a neural network based sensor fusion model for a tool wear monitoring system in turning operations. A wavelet packet tree approach was used for the analysis of the acquired signals, namely cutting strains in tool holder and motor current, and the extraction of wear-sensitive features. Once a list of possible features had been extracted, the dimension of the input feature space was reduced using principal component analysis. Novel strategies, such as the robustness of the developed ANN models against uncertainty in the input data, and the integration of the monitoring information to an optimization system in order to utilize the progressive tool wear information for selecting the optimum cutting conditions, are proposed and validated in manual turning operations. The approach is simple and flexible enough for online implementation.  相似文献   

10.
多传感器数据融合技术在刀具状态监测中的应用   总被引:1,自引:0,他引:1  
提出了一种基于混合智能融合技术进行铣刀磨损量监测和预测方法。利用多传感器对切削力和振动信号进行监测,通过频率变换提取切削力特征量,采用小波包分解技术提取振动信号特征量。通过信号特征值的组合,分别探讨了几种混合智能数据融合技术——小波神经网络、遗传神经网络、遗传小波神经网络对刀具磨损量的预测效果。试验分析表明:提出的几种基于多传感器的混合智能数据融合技术均能够有效地完成刀具磨损量监测和预测,同时,对这几种数据融合技术各自的特点进行了比较分析。  相似文献   

11.
提出了基于小波多分辨分析和小波包预处理的模拟电路故障诊断方法。该方法用小波作为信号预处理工具,经小波多分辨分析得到N层分解后的低频和高频信号,再利用小波包分析对多分辨分析没有细分的高频信号进一步分解,以达到提高频率分解率的目的。经PCA分析和归一化后的能量作为训练样本送入BP神经网络进行训练。仿真实验表明此方法能够快速有效的对模拟电路的故障进行诊断和定位。  相似文献   

12.
Drill wear detection and prognosis is one of the most important considerations in reducing the cost of rework and scrap and to optimize tool utilization in hole making industry. This study presents the development and implementation of two supervised vector quantization neural networks for estimating the flank-land wear size of a twist drill. The two algorithms are; the learning vector quantization (LVQ) and the fuzzy learning vector quantization (FLVQ). The input features to the neural networks were extracted from the vibration signals using power spectral analysis and continuous wavelet transform techniques. Training and testing were performed under a variety of speeds and feeds in the dry drilling of steel plates. It was found that the FLVQ is more efficient in assessing the flank wear size than the LVQ. The experimental procedure for acquiring vibration data and extracting features in the time-frequency domain using the wavelet transform is detailed. Experimental results demonstrated that the proposed neural network algorithms were effective in estimating the size of the drill flank wear.  相似文献   

13.
提出了一种基于混合智能融合技术进行铣刀磨损量监测和预测方法。利用多传感器对切削力和振动信号进行监测,通过频率变换提取切削力特征量,采用小波包分解技术提取振动信号特征量。通过信号特征值的组合,分别探讨了几种混合智能数据融合技术-小波神经网络,遗传神经网络,遗传小波神经网络对刀具磨损量的预测效果。实验分析表明,提出的几种基于多传感器的混合智能数据融合技术均能够有效地完成刀具磨损量监测和预测,同时对它们各自的特点进行了比较分析。  相似文献   

14.
The motor is the workhorse of industry. The issues of preventive and condition-based maintenance, on-line monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This paper introduces fault detection for induction motors. Stator currents are measured by current meters and stored by time domain. The time domain is not suitable for representing current signals, so the frequency domain is applied to display signals. The Fourier transform is employed to convert signals. After signal conversion, signal features must be extracted by signal processing such as wavelet and spectrum analysis. Features are entered in a pattern classification model such as a neural network model, a polynomial neural network, or a fuzzy inference model. This paper describes fault detection results that use Fourier and wavelet analysis. This combined approach is very useful and powerful for detection signal features.This work was presented in part at the 9th International Symposium on Artificial Life and Robotics, Oita, Japan, January 28–30, 2004This work has been supported by “Research Center for Future Logistics Information Technology” hosted by the Ministry of Education in Korea.  相似文献   

15.
It is known that the force and vibration sensor signals in a turning process are sensitive to the gradually increasing flank wear. Based on this fact, this paper investigates a flank wear assessment technique in turning through force and vibration signals. Mainly to reduce the computational burden associated with the existing sensor-based methods for flank wear assessment, a so-called wavelet network is investigated. The basic idea in this new method is to optimize simultaneously the wavelet parameters (that represent signal features) and the signal-interpretation parameters (that are equivalent to neural network weights) to eliminate the feature extraction phase without increasing the computational complexity of the neural network. A neural network architecture similar to a standard one-hidden-layer feedforward neural network is used to relate sensor signal measurements to flank wear classes. A novel training algorithm for such a network is developed. The performance of this n ew method is compared with a previously developed flank wear assessment method which uses a separate feature extraction step. The proposed wavelet network can also be useful for developing signal interpretation schemes for manufacturing process monitoring, critical component monitoring, and product quality monitoring.  相似文献   

16.
表面肌电(Surface electromyography,sEMG)信号直接、客观地反映了神经和肌肉的活动功能状态,已获得广泛应用。本文设计了一种sEMG信号采集电路并以单通道形式采集上肢5种动作的sEMG信号,经小波包变换提取6种特征(其中一种引自基于小波变换的特征提取方法)并分别结合PCA和KPCA进行处理;再分别用BP神经网络和SVM进行动作识别。此外,对比了小波变换的特征提取;讨论了KPCA与PCA在特征变换上的差异。所提取的基于小波包变换的6种特征有5种的识别率均超过95.7%,其中引入的高低频系数组合特征在BP神经网络下平均识别率超过99%。基于小波变换提取的5种特征经KPCA变换后也达到较高的识别率。实验结果表明,本文的sEMG信号采集方法及其特征提取方法均达到较好效果。  相似文献   

17.
Due to the rapid development of globalization, which makes supply chain management more complicated, more companies are applying radio frequency identification (RFID), in warehouse management. The obvious advantages of RFID are its ability to scan at high-speed, its penetration and memory. In addition to recycling, use of a RFID system can also reduce business costs, by indentifying the position of goods and picking carts. This study proposes an artificial immune system (AIS)-based fuzzy neural network (FNN), to learn the relationship between the RFID signals and the picking cart’s position. Since the proposed network has the merits of both AIS and FNN, it is able to avoid falling into the local optimum and possesses a learning capability. The results of the evaluation of the model show that the proposed AIS-based FNN really can predict the picking cart position more precisely than conventional FNN and, unlike an artificial neural network, it is much easier to interpret the training results, since they are in the form of fuzzy IF–THEN rules.  相似文献   

18.
Most semiconductor manufacturing systems (SMS) operate in a highly dynamic and unpredictable environment. The production rescheduling strategy addresses uncertainty and improves SMS performance. The rescheduling framework of SMS is presented as layered scheduling strategies with an optimization rescheduling decision mechanism. A fuzzy neural network (FNN) based rescheduling decision model is implemented which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to current system disturbances. The mapping between the input of FNN, such as disturbances, system state parameters, and the output of FNN, optimal rescheduling strategies, is constructed. An example of a semiconductor fabrication line in Shanghai is given. The experimental results demonstrate the effectiveness of proposed FNN-based rescheduling decision mechanism approach over the alternatives such as back-propagation neural network (BPNN) and multivariate regression (MR).  相似文献   

19.
Due to the rapid development of globalization, which makes supply chain management more complicated, more companies are applying radio frequency identification (RFID), in warehouse management. The obvious advantages of RFID are its ability to scan at high-speed, its penetration and memory. In addition to recycling, use of a RFID system can also reduce business costs, by indentifying the position of goods and picking carts. This study proposes an artificial immune system (AIS)-based fuzzy neural network (FNN), to learn the relationship between the RFID signals and the picking cart’s position. Since the proposed network has the merits of both AIS and FNN, it is able to avoid falling into the local optimum and possesses a learning capability. The results of the evaluation of the model show that the proposed AIS-based FNN really can predict the picking cart position more precisely than conventional FNN and, unlike an artificial neural network, it is much easier to interpret the training results, since they are in the form of fuzzy IF–THEN rules.  相似文献   

20.
Abstract: The electromyographic signals observed at the surface of the skin are the sum of many small action potentials generated in the muscle fibres. After the signals are processed, they can be used as a control source of multifunction prostheses. The myoelectric signals are represented by wavelet transform model parameters. For this purpose, four different arm movements (elbow extension, elbow flexion, wrist supination and wrist pronation) are considered in studying muscle contraction. Wavelet parameters of myoelectric signals received from the muscles for these different movements were used as features to classify the electromyographic signals in a fuzzy clustering neural network classifier model. After 1000 iterations, the average recognition percentage of the test was found to be 97.67% with clustering into 10 features. The fuzzy clustering neural network programming language was developed using Pascal under Delphi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号