首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: The preparation of poly(ε‐caprolactone)‐g‐TiNbO5 nanocomposites via in situ intercalative polymerization of ε‐caprolactone initiated by an aluminium complex is described. These nanocomposites were obtained in the presence of HTiNbO5 mineral pre‐treated by AlMe3, but non‐modified by tetraalkylammonium cations. These hybrid materials obtained have been characterized by Fourier transform infrared absorption spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and dynamic mechanical analysis. Layered structure delamination and homogeneous distribution of mineral lamellae in the poly(ε‐caprolactone) (PCL) is figured out and strong improvement of the mechanical properties achieved. The storage modulus of the nanocomposites is enhanced as compared to pure PCL and increases monotonously with the amount of the filler in the range 3 to 10 wt.‐%.

SEM image of the fractured surface of a PCL‐TiNbO5 nanocomposite film.  相似文献   


2.
This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ‐caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL‐30B hybrid nanocomposites. Besides, two samples of poly(ɛ‐caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X‐ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant. POLYM. COMPOS., 35:827–838, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
BACKGROUND: The technological development of poly(ε‐caprolactone) (PCL) is limited by its short useful lifespan, low modulus and high crystallinity. There are a few papers dealing with the crystallization behavior of carbon nanotube‐reinforced PCL composites. However, little work has been done on the crystallization kinetics of melt‐compounded PCL/multiwalled carbon nanotube (MWNT) nanocomposites. In this study, PCL/MWNT nanocomposites were successfully prepared by a simple melt‐compounding method, and their morphology and mechanical properties as well as their crystallization kinetics were studied. RESULTS: The MWNTs were observed to be homogeneously dispersed throughout the PCL matrix. The incorporation of a very small quantity of MWNTs significantly improved the storage modulus and loss modulus of the PCL/MWNT nanocomposites. The nonisothermal crystallization behavior of the PCL/MWNT nanocomposites exhibits strong dependencies of the degree of crystallinity (Xc), peak crystallization temperature (Tp), half‐time of crystallization (t1/2) and Avrami exponent (n) on the MWNT content and cooling rate. The MWNTs in the PCL/MWNT nanocomposites exhibit a higher nucleation activity. The crystallization activation energy (Ea) calculated with the Kissinger model is higher when a small amount of MWNTs is added, then gradually decreases; all the Ea values are higher than that of pure PCL. CONCLUSION: This paper reports for the first time the preparation of high‐performance biopolymer PCL/MWNT nanocomposites prepared by a simple melt‐compounding method. The results show that the PCL/MWNT nanocomposites can broaden the applications of PCL. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
In this study, montmorillonite (MMT)/poly(?‐caprolactone)‐based polyurethane cationomer (MMT/PCL‐PUC) nanocomposites were prepared and their mechanical properties, thermal stability, and biodegradability were investigated. PCL‐PUC has 3 mol % of quaternary ammonium groups in the main chain. The MMT was successfully exfoliated and well dispersed in the PCL‐PUC matrix for up to 7 wt % of MMT. The 3 mol % of quaternary ammonium groups facilitated exfoliation of MMT. The 1 wt % MMT/PCL‐PUC nanocomposites showed enhanced tensile properties relative to the pure PCL‐PU. As the MMT content increased in the MMT/PCL‐PUC nanocomposites, the degree of microphase separation of PCL‐PUC decreased because of the strong interactions between the PCL‐PUC chains and the exfoliated MMT layers. This resulted in an increase in the Young's modulus and a decrease in the elongation at break and maximum stress of the MMT/PCL‐PUC nanocomposites. Biodegradability of the MMT/PCL‐PUC nanocomposites was dramatically increased with increasing content of MMT, likely because of the less phase‐separated morphology of MMT/PCL‐PUC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Multifunctional nanocomposites can be achieved by addition of modified layered nanoclays to impart to the final materials a designed set of properties. The easy reproducible preparation of copper modified montmorillonite has been reported here together with its spectroscopic characterization, including 29Si NMR in the solid state. Epoxy‐nanocomposites and glass fiber reinforced laminates containing 1% wt and 3% wt of Cu2+‐MMT have been prepared and characterized. Thermal and mechanical properties have been evaluated. The experiments carried out to evaluate the antibacterial activity showed that the epoxy‐resin nanocomposites with 3% wt of Cu2+‐MMT exhibited an inhibition action higher than 96% against Escherichia coli and Staphylococcus aureus. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44733.  相似文献   

6.
《Polymer Composites》2017,38(8):1680-1688
Various layered double hydroxides (LDHs), including MgAl, CoAl, NiAl, and ZnAl‐LDHs, were synthesized and modified using sodium dodecyl benzene sulfonate. Nonhalogen flame‐retardant PS/LDHs nanocomposites were prepared via melt mixing method. The structure of PS/LDHs nanocomposites was investigated by Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) pattern technique, and scanning electronic microscope. Results from XRD indicated that intercalated/exfoliated structure was achieved in the polystyrene matrix. Dynamic mechanical thermal analysis suggested that the storage modulus and T g for the PS/LDHs nanocomposites was efficiently improved. Thermal and flammability properties of PS nanocomposites were investigated using thermogravimetry and cone calorimetry. Thermal analysis was evaluated and the prepared nanocomposites showed slightly lower thermal stability probably due to the presence of LDH, which starts to decompose at a lower temperature. Compared with neat PS, the peak heat release rate of PS/MgAl and PS/ZnAl‐LDHs nanocomposites filled with 5 wt% LDHs is reduced by 7% and 12%, respectively. Among all LDHs, MgAl, and ZnAl‐LDHs had a better smoke suppression effect with a reduction of peak smoke production rate and CO release rate of 37% and 44%, respectively. POLYM. COMPOS., 38:1680–1688, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Poly(?‐caprolactone)diol (PCL)–functionalized nanodiamonds (f‐NDs) were synthesized using a click chemistry reaction between the azide‐moiety PCL and alkyne‐moiety NDs and were incorporated into shape memory polyurethane (PU) at f‐ND concentrations of 0, 0.5, 1, and 2 wt % to produce high‐performance shape memory nanocomposites. The PU/f‐ND nanocomposites exhibited better shape recovery, shape recovery stress, and breaking stresses than pure PU. Shape recovery of greater than 95% was demonstrated for all the nanocomposites in the third cycle, and the shape recovery stresses increased significantly with the f‐ND content. These enhanced mechanical and shape recovery properties are ascribed to increased interactions between the f‐NDs and PU matrix due to incorporation of click‐coupled f‐NDs. The click‐coupled NDs can be used as nanofillers to enhance the mechanical and shape memory properties of polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45465.  相似文献   

8.
Nanocomposites based on biodegradable poly(?‐caprolactone) (PCL) and layered silicates (montmorillonite, MMT) were prepared either by melt interaction with PCL or by in situ ring‐opening polymerization of ?‐caprolactone as promoted by the so‐called coordination‐insertion mechanism. Both non‐modified clays (Na+ ‐MMT) and silicates modified by various alkylammonium cations were studied. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. Even at a filler content as low as 3 wt% of inorganic layered silicate, the PCL‐layered silicate nanocomposites exhibited improved mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as a result of a charring effect. It was shown that the formation of PCL‐based nanocomposites depended not only on the nature of the ammonium cation and related functionality but also on the selected synthetic route, melt intercalation vs. in situ intercalative polymerization. Interestingly enough, when the intercalative polymerization of ?‐caprolactone was carried out in the presence of MMT organo‐modified with ammonium cations bearing hydroxyl functions, nanocomposites with much improved mechanical properties were recovered. Those hybrid polyester layered silicate nanocomposites were characterized by a covalent bonding between the polyester chains and the clay organo‐surface as a result of the polymerization mechanism, which was actually initiated from the surface hydroxyl functions adequately activated by selected tin (II) or tin (IV) catalysts.  相似文献   

9.
In order to investigate whether the particle sizes of inorganic additives in polymer have an influence on the flame‐retardant and other properties of the polymer, five types of Mg3Al–CO3 layered double hydroxide (LDHs) with particle diameters of 80–100, 200–350, 500–550, 550–600, and 700–900 nm were synthesized using a hydrothermal method. The obtained Mg3Al–CO3 LDHs were treated using the aqueous miscible organic solvent treatment method to give highly dispersed platelets in Polypropylene (PP). The thermal stability, flame retardancy, and mechanical properties of the PP/AMO–LDH nanocomposites were investigated systematically. The results showed that the thermal stability and flame retardancy of PP could be improved after incorporating AMO–LDHs. The temperature at 50% weight loss (T0.5) of PP/LDH (700–900 nm) nanocomposites with a LDH loading of 15 wt % was increased by 57 °C. When the LDHs loading was 40 wt %, the peak heat release rate (PHRR) of the PP/LDH nanocomposites with small LDHs particle sizes (<350 nm) was decreased by ca. 58%. The limiting oxygen index was increased by 5% for PP/LDH (80–100 nm) nanocomposites. The response surface regression results also indicated that both LDH particle size and loading have influence on PHRR, heat release capacity, tensile strength, and elongation at break. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46204.  相似文献   

10.
Inherent physical properties and commercial availability makes poly(ε‐caprolactone) (PCL) very attractive as a potential substitute material for nondegradable polymers for commodity applications. However, a balance of toughness and stiffness is needed in order to transfer this potential into reality, particularly for short‐term packaging applications. In this context, layered double hydroxide modified with palmitic acid (LDH‐palmitate), was used as a nanoadditive to enhance the mechanical properties of PCL. Composites from PCL were prepared by melt‐blending with LDH‐palmitate loadings in the 1?10 wt % range. Scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction were used to study the structure and morphology of the composites. The results showed homogeneous dispersion of clay particles in composites, but the degree of stacking of clay platelets was related to the LDH‐palmitate loadings. Charpy impact test measurements revealed an anomalous toughness improvement in the case of composite containing 5 wt % LDH‐palmitate, attributed to a combination of microcavitation and changes in crystallite sizes in the composite. The addition of LDH‐palmitate improved the water vapor barrier permeation of neat PCL film. In summary, LDH‐palmitate was shown to have potential as a nanoadditive to obtain tougher LDH‐PCL composite with improved barrier property. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41109.  相似文献   

11.
Poly(ε‐caprolactone) (PCL) was grafted to the surface of starch nanocrystals (StN) via microwave‐assisted ROP. The resultant nanoparticles were then incorporated into a poly(lactic acid) matrix to produce fully‐biodegradable nanocomposites with good mechanical properties. A loading level of 5 wt.‐% StN‐g‐PCL resulted in simultaneous enhancements of strength and elongation. The StN‐g‐PCL self‐aggregated as rubbery microparticles to enhance the elongation by ca. 10‐fold over that of neat PLA. Meanwhile, the grafted PCL chains were miscible with PLA and formed a stress‐transferring interface to the StN, providing a reinforcing function.

  相似文献   


12.
Crosslinked alginate‐based nanocomposites at different SiO2 contents were prepared successfully by blending the nano‐SiO2 solution into low concentration alginate solution (0.5 wt %), with the alginate concentration increased step by step to the resulted concentration, in this course glycerol was used as plasticizer and 5 wt % CaCl2 as crosslinker. The combined effect of SiO2 content (1.5–8 wt %) on the microstructural, physical, mechanical, and optical properties of the nanocomposite films were investigated. The results showed that tensile strength and elongation was improved by about 40.33% and 89%, respectively, upon increasing the SiO2 content to 4.5 wt %. In addition, water vapor permeability and swelling degree decreased by 19% and 16% with increasing SiO2 content up to 8 and 4.5 wt %, respectively with respect to pure crosslinked alginate film. Thermogravimetric analysis also revealed that nano‐SiO2 can improve the thermal stability of sodium alginate films produced by this method. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45286.  相似文献   

13.
Poly(lactic acid)/poly(ε‐caprolactone)/organically modified montmorillonite (PLA/PCL/OMMT) nanocomposites were melt‐processed in a twin‐screw extruder under high shear conditions. As a result of the processing conditions employed, the OMMT layers located in the less compatible PCL phase in all the ternary nanocomposites. The morphology of the PLA/PCL blend evolved from “sea‐island” to co‐continuous upon the addition of OMMT. Both the X‐ray diffraction (XRD) and viscoelastic characterization suggested similar OMMT dispersion in the reference PLA binary and in the PLA/PCL ternary nanocomposites, regardless of its location in the PLA and PCL phase, respectively. The reinforcing effect of the organoclay was also similar. The addition of OMMT to the PLA/PCL blend fully compensated the loss in stiffness and oxygen barrier performance produced by PCL in PLA; the nanocomposite with 3% OMMT showed the same modulus and permeability values as those of pure PLA. Moreover, the ductile behavior (elongation at break > 80%) of the PLA/PCL blend remained constant even in the nanocomposite containing 5% OMMT. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43815.  相似文献   

14.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

15.
Naturally available halloysite nanotubes (HNTs) with hollow nanotubular structures were used as reinforcement in poly(ε‐caprolactone) (PCL). The PCL/HNT nanocomposites were prepared by melt mixing the polymer with as‐received HNTs up to 10 wt % in an internal batch mixer. Transmission electron microscopy analysis indicated that the HNTs were dispersed uniformly on the nanoscale throughout the PCL matrix. Differential scanning calorimeter studies revealed that the PCL crystallinity was decreased in the nanocomposites, and the HNTs dispersed in the PCL matrix led to an increase in the non‐isothermal crystallization temperature of the PCL. Tensile and dynamic mechanical tests showed great enhancement in strength and stiffness at low HNT content, while still maintaining the ductility of the PCL. The glass transition temperature (Tg) of the pristine PCL was substantially increased with increase in filler loading, which indicates good reinforcing effect imparted by the addition of HNT. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior, and a percolated network of HNT particles was formed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
This study focuses on the possibility of improving performance properties of polydicyclopentadiene (PDCPD) nanocomposites for engineering applications using nanoparticles. In this article, molybdenum disulfide/polydicyclopentadiene (MoS2/PDCPD) nanocomposites have been prepared by in situ ring‐opening metathesis polymerization using reaction injecting molding (RIM) process. To enhance the interfacial adhesion between the fillers and PDCPD matrix, the surface modified MoS2 nanoparticles hybridized with dialkyldithiophosphate (PyDDP) were successfully prepared by in situ surface grafting method. The effect of low MoS2 loadings (<3 wt %) on the mechanical and tribological behaviors of PDCPD was evaluated. The results indicated that the friction coefficient of the MoS2/PDCPD nanocomposites was obviously decreased and the wear resistance of nanocomposites was greatly improved by the addition of PyDDP‐hybridized MoS2 nanoparticles; meanwhile, the mechanical properties were also enhanced. The MoS2/PDCPD nanocomposites filled with 1 wt % PyDDP‐hybridized MoS2 exhibited the best mechanical and anti‐wear properties. The friction coefficient was shown to decrease by more than 40% compared to pure PDCPD by incorporating just 1 wt % hybridized MoS2 nanoparticles, and modest increase in modulus and strength was also observed. The reinforcing and wear‐resistant mechanisms of MoS2/PDCPD nanocomposites were investigated and discussed by scanning electron microscopy. The well interfacial compatibility between the particle/matrix interfaces played an important role for the improved mechanical and tribological properties of MoS2/PDCPD nanocomposites in very low MoS2 loadings. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

18.
In this study, low‐density polyethylene (LDPE) nanocomposite films with two types of nanoparticles, TiO2 (3 wt %) and Closite 20A (3 and 5 wt %), were prepared using a melt blow extrusion as an industrial method and their properties such as mechanical properties, water vapor, oxygen and carbon dioxide gas barrier, and antimicrobial activity were tested. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were also performed to determine the degree of dispersion and exfoliation of nanoparticles. Mechanical test indicated that the reinforcement in the presence of the nanocomposites was more than that with their conventional counterparts, and the highest stiffness was achieved in a sample containing 5 wt % clay and 3 wt % TiO2. Exfoliation of silicate layers and a good dispersion of TiO2 nanoparticles in LDPE were achieved as confirmed by XRD and TEM. The gas barrier properties were improved after formation of the nanocomposites especially by insertion of 5 wt % of clay nanoparticles as a filler in the LDPE matrix. The photocatalytic effect of the nanocomposite film was carried out by antimicrobial evaluation against Pseudomonas spp. and Rhodotorula mucilaginosa and by ethylene removal test using 8 W ultraviolet (UV) lamps with a constant relative intensity of 1 mW cm?2. The greatest effects were recorded by combining UVA illumination and active film. It was also proven that the photocatalyst thin film with improved barrier properties prepared by extrusion could be used in horticultural product packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41764.  相似文献   

19.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The advantage of using 3D hybrid filler containing carboxylic acid functionalized multiwalled carbon nanotubes (c‐MWCNTs) and sodium dodecyl sulfate modified Ni–Al layered double hydroxide (sN‐LDH) over c‐MWCNTs and sN‐LDHs acting alone was investigated. PS/c‐MWCNT composites proved to be good for improvement of properties, but not to an appreciable level, especially in case of electrical conductivity, flame retardancy, rheology, and water vapor permeability. Hence, a combination of 0.3 wt % of c‐MWCNT and 3 wt % of sN‐LDH was optimized as additives to assist in the full expression of the filler traits in the nanocomposite and to obtain a versatile nanocomposite with properties specific to both the fillers. This approach slightly decreases the dispersion challenge faced with handling high loadings of CNT and also the intrinsic limitations specific to the individual fillers (i.e., inertness of CNTs and low conductivity of LDHs). Moreover, the anion/anionic repulsion of organically modified CNT/LDH facilitates effective dispersion of the additive opposing adhesion. FTIR and Raman spectroscopy provided evidence for incorporation and proper dispersion of the additives in the polymer matrix, with XRD and TEM confirming a well‐dispersed morphology of the nanocomposites. In this work, focus is made on the improvement of thermal stability, flame retardancy, melt rheology, hardness, electrical conductivity, and water vapor permeability of PS/0.3 wt % c‐MWCNT/3 wt % sN‐LDH nanocomposites over PS/0.3 wt % c‐MWCNT, making use of the synergistic effect of c‐MWCNT coupled with sN‐LDH on polystyrene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46513.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号