首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel poly(methyl methacrylate) (PMMA)/silica aerogel bimodal cellular foams were prepared by melt mixing and a supercritical carbon dioxide foaming process. The effects of the silica aerogel content on the morphologies and thermal‐insulating and mechanical properties of the foams were investigated by scanning electron microscopy, mechanical tests, and heat‐transfer analysis. The experimental results show that compared to the pure PMMA foam, the PMMA/silica aerogel microcellular foams exhibited more uniform cell structures, decreased cell sizes, and increased cell densities (the densities of the foams were 0.38–0.45 g/cm3). In particular, a considerable number of original nanometric cells (ca. 50 nm) were evenly embedded in the cell walls and on the inner surfaces of the micrometric cells (<10 μm). A 62.7% decrease in the thermal conductivity (0.072 W m−1 K−1) in comparison to that of raw PMMA after 0.5 wt % silica aerogel was added was obtained. Mechanical analysis of the PMMA/silica aerogel foams with 5 and 2 wt % silica aerogel showed that the compressive and flexural strengths were distinctly improved by 92 and 52%, respectively, and the dynamic storage moduli increased. The enhanced performance showed that with the addition of silica aerogel into PMMA, one can obtain thermal‐insulation materials with a favorable mechanical strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44434.  相似文献   

2.
采用偶氮二异庚腈(ABVN)为引发剂,尿素/甲酰胺为复合发泡剂制备了一种高性能聚甲基丙烯酰亚胺(PMI)泡沫材料。重点考察了不同配比的混合发泡剂用量对PMI泡沫材料性能的影响。结果表明:通过改变两种发泡剂的用量可以获得泡孔均匀且密度为38.3975.99 kg/m3的PMI泡沫材料,而PMI泡沫的力学性能和热性能与泡沫密度呈正相关。当尿素和甲酰胺的用量都为1 phr时,所得PMI泡沫材料具有最佳综合性能,其拉伸强度和压缩强度分别为2.0 MPa和1.42 MPa,玻璃化转变温度(Tg)为217.7℃。  相似文献   

3.
Thermoplastic elastomer (TPE) foams have important application in electrical, toys, and other industries. Several foams were prepared by ethylene‐vinyl acetate copolymer (EVA) lonely, and in combination with styrene‐butadiene and ethylene‐propylene‐diene monomer rubbers (SBR and EPDM). The effects of crosslinking and foaming agents and EVA type on density and mechanical properties of the cured foams with two curing systems, peroxide and sulfur‐peroxide with potential use in automotive applications, were studied. The results showed that proposed compounds formulations were foamed properly. The viscosity of the EVA was a key factor for the density values of the formed foams. The densities of the cured foams with peroxide system with various SBR contents were higher when compared with cured foams with sulfur‐peroxide system. With increasing foaming agent, the densities of the foams were reduced for studied curing systems. The densities of the EVA–EPDM foams were lower than those of the EVA–SBR foams in the same studied conditions. Increasing rubber in foam formulation had adverse effect on tensile properties of the foams. The existence of the talc powder in foam formulation had important role on the shape and type of the formed cells and resulted in foams with mostly closed cells. The results of this study help the automotive article designer to produce suitable TPE foam. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45357.  相似文献   

4.
Closed‐cell polyimide rigid foams with different Calculated Molecular Weight (Calc'd Mn) and foam density (ρ) have been prepared by thermal foaming of nadimide‐endcapped imideoligomers (NAIO) powder. The NAIO powder was obtained by thermally treating of a PMR poly(amide ester) solution derived from the reaction of diethyl ester of 2,3,3′,4′‐biphenyltetracarboxylic dianhydride (α‐BPDE) and p‐phenylenediamine (p‐PDA) using monoethyl ester of cis‐5‐norbornene‐ endo‐2,3‐dicarboxylic acid (NE) as reactive endcapping agent in ethyl alcohol. Effect of Calc'd Mn and foam density (ρ) on mechanical and thermal properties of the polyimide rigid foams have been systematically investigated. It was found that the thermal foaming properties of NAIO powders were affected by the Calc'd Mn. The appreciate Calc'd Mn could yield polyimide foams with both high closed‐cell content (Cc) (>80%) and outstanding mechanical properties. Moreover, the thermal properties were reduced by increasing of Calc'd Mn and the mechanical properties improved gradually by increasing foam densities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3282–3291, 2013  相似文献   

5.
This work presents the cellular microstructures and properties of PMMA/graphene nanoribbons (GNRs) microcellular foams. GNRs were obtained by oxidative unzipping multiwalled carbon nanotubes and solvent thermal reduction in dimethylformamide (DMF), then they were mixed with PMMA to fabricate PMMA/GNRs nanocomposites by solution blending. Subsequently, supercritical carbon dioxide (scCO2) as a friendly foaming agent was applied to fabricate PMMA/GNRs microcellular foam by a batch foaming in a special mold. The morphology of cell structure was analyzed by scanning electron microscopy and image software, showing that the addition of a smaller content of GNRs caused a fine cellular structure with a higher cell density (~3 × 1011 cells/cm3) and smaller cell sizes (~1 μm) due to their remarkable heterogeneous nucleation effect. The mechanical testing of PMMA/GNRs microcellular foams demonstrated that the obtained GNRs also could be used as a reinforcing filler to increase the mechanical properties of PMMA foams. An improvement in the compressive strength of ~80% (about 39% increase standardized by specific compressive strength) was achieved by 1.5 wt % GNRs addition, and the thermal stability of PMMA/GNRs foams was enhanced too. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45182.  相似文献   

6.
A series of thermal insulation, acoustic absorption isocyanate‐based lightweight polyimide (PI) foams with 4,4′‐diaminodiphenyl ether (ODA) units were prepared from polyaryl polymethylene isocyanate (PAPI) and the esterification solution derived from pyromellitic dianhydride (PMDA) and ODA. The structures and properties of the PI foams prepared with different molar ratio of ODA/PMDA were investigated in detail. The results show that the ODA units have great influence on the foam properties. With the increase of the ODA units, the density decreases firstly and then increases. When the molar ratio of ODA/PMDA is 3/10, the foam reaches the minimum density (13.7 kg/m3). Moreover, with increasing the ODA units, the acoustic absorption properties increase firstly and then decrease owing to the variation of the average cell diameter of the PI foams. All PI foams show excellent thermal stability, and the 5% and 10% weight loss temperature are in the range of 250–270 °C and 295–310 °C, respectively. In addition, the PI foams present low thermal conductivity and thermal diffusivity. Furthermore, the mechanical property was also evaluated and the compressive strength of the PI foams is in the range of 33.0–45.7 kPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46029.  相似文献   

7.
Waste polyurethane foam (w‐PU) and waste ethylene–vinyl acetate foam (w‐EVA) were used as fillers for the production of an ethylene–vinyl acetate (EVA) blend foam. Two different foaming techniques (single‐stage and heat–chill processes) were used for this purpose. The waste foam concentration was varied up to 30 wt % of the original EVA. The physical, mechanical, and morphological properties of the filled foam were studied. The single‐stage process produced blend foams with a lower density and a greater cell size than the foams obtained by the heat–chill process. The density and compression strength of the blend foam increased as the percentage of w‐PU foam increased. However, for the w‐EVA/EVA blend foams, the addition of w‐EVA foam did not significantly affect the density or compression strength compared to the original EVA foams. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44708.  相似文献   

8.
In this study, conductive epoxy foams with different carbon black (CB) contents were fabricated with expandable microspheres as foaming agents. The effect of the CB content, microsphere concentration, precuring time, and foaming temperature on the electrical conductivity and compressive properties of the obtained foams were investigated systematically. The differential scanning calorimeter and rheological tests confirmed that the CB accelerated the curing reaction, increased the onset viscosity of the epoxy blend during foaming, and affected the foaming process. In addition, all of the parameters, including the CB content, microsphere concentration, precuring time, and foaming temperature, were confirmed to change the foam structures and further change the conductivity and mechanical properties. The electrical properties test revealed that the foaming process improved the conductivity of the composites. On the basis of the electrical properties test results and scanning electron microscope images, a flow‐induced CB aggregation mechanism is presented, in which the thermally triggered microsphere expansion pushed the resins away, squeezed the CB together, and changed the CB distribution throughout the foams. This made more conductivity paths. The obtained foam could just be used as an antistatic material, but it gave us an example for exploring lightweight and low‐cost conductive epoxy foams with other applications, for example, electromagnetic shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45071.  相似文献   

9.
Microcellular foams are widely applied in various applications in both civil and military applications for barriers and energy absorption materials. Poly(methyl methacrylate) microcellular foams were fabricated via supercritical foaming method. Field emission scanning electron microscopy, differential scanning calorimetry, and mechanical test machine were used to visualize the foam structure and test the quasi‐static compression properties. Moreover, Split Hopkinson Bar (SHPB) setups were adopted to explore the dynamic compression properties. The experimental results show that the microcellular foams have homogeneous cell size distribution and exhibit superior compressive behavior at both quasi‐static and high strain rates. The mechanical properties depend on both foam density and strain rate. Strain rate effects are clearly observed. At quasi‐static strain rate and 7500 S?1 regime, cell wall bucking and folding are the main failure mechanism. However, at high strain rate regime, softening phenomenon is observed. By roughly calculating the energy absorbed and the temperature rise, the temperature of the foams will rise up to as high as 130 °C after conducting high strain rate compression, and it is postulated that the generated heat will destroy the cell structure of the foams. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46044.  相似文献   

10.
A novel polyimide/silver (PI/Ag) foam was prepared by isocyanate foaming and direct ion exchange between Ag+ ions from silver nitrate and the H+ ions in the carboxyl (–COOH) groups of the polyamide molecular chain. The microstructures, chemical and phase composition of the PI/Ag foams were tested by SEM, FT-IR and XRD. The properties were tested by TG, DSC and UV spectrophotometer. The effects of different Ag contents on the microstructures and properties were analysized. SEM results showed that the PI/Ag foams had present the opened-cells type. With the increase in the Ag+ ions contents, both the amount of silver particles and the UV reflectivity of the PI/Ag foams increased, as the size of silver particles decreased. FT-IR test results show that the introduction of the silver nano-particles have no significant effect on the chemical structure of the PI foams. XRD results indicate that the silver nano-particles are face-centered cubic structure and have good crystalline properties. Thermal tests results show that the PI/Ag foams maintain the excellent thermal stability. Based on the above experimental results, the reaction mechanism during the foaming and curing process were also analysized.  相似文献   

11.
Melamine amino trimethylene phosphate (MATMP) as a novel nitrogen‐phosphorus flame retardant, was synthesized by the reaction of melamine with amino trimethylene phosphonic acid (ATMP) in aqueous solution. The structure of MATMP was characterized by Fourier transform infrared spectroscopy, solid state 31 P nuclear magnetic resonance, and thermogravimetric analysis. Rigid polyurethane (RPU) foams were prepared by one‐shot and free‐rise method, using MATMP as a flame retardant. The flame retardant, mechanical and thermal properties of MATMP in RPU foams were studied. It is found that the RPU foam containing 15 wt % MATMP (sample RPUMA‐15) can pass the UL‐94 V0 test with a limiting oxygen index of 25.5%. The cone calorimeter test results show that the peak heat release rate of RPUMA‐15 is reduced about 34% compared with that of untreated RPU foam. SEM results indicate that the RPU foams with MATMP can form the good and compact char during burning which provides better flame retardancy. The compressive strength of the RPU foams filled with MATMP first increases and then slightly decreases with an increase in the MATMP content comparing with that of untreated RPU foam. Moreover, thermal conductivities of the MATMP filled RPU foams are about 0.03 W/m K. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45234.  相似文献   

12.
通过添加不同含量的化学发泡剂,制备了较小密度(0.5 g/cm~3)的环氧树脂基微孔发泡材料,研究了发泡剂含量(0.25%~2%)对环氧复合发泡材料发泡行为的影响,并讨论了材料的力学性能及隔热性能的变化规律。结果表明,随着发泡剂含量的增加,材料的表观密度不断降低,但泡孔尺寸不断增大,泡孔密度则不断降低。力学性能及隔热性能测试表明,随发泡剂含量的增加,材料的压缩屈服强度和压缩弹性模量不断降低,但是材料的隔热性能不断提高。  相似文献   

13.
Rigid polyurethane foams were successfully prepared by blending up to 70 wt% of two different palm oil‐based bio‐polyols with a petrochemical polyether polyol. The bio‐polyols were synthesized by epoxidation–oxirane ring‐opening process using water (PP102) and diethylene glycol (PP147), respectively. Due to the high viscosity of both bio‐polyols the reactive mixture was heated to start the foaming reaction at about 50 °C. Under these conditions, the gelling reactions speed up as the amount of PP147 increases but slow down to a great extent when PP102 is used. The thermal conductivity of modified foams is higher and the closed cell content lower compared to reference ones, even when the bio‐foams present a lower apparent density. However, all foams exhibit reduced water absorption, excellent dimensional stability and better thermal stability at temperatures up to 400 °C than the control foam. Conversely, their mechanical and dynamic mechanical properties become poorer as the PP147 concentration increases and even more so if PP102 is used instead. PP147 foams containing up to 50% bio‐polyol could be used as a green replacement of petroleum‐based ones in applications where excellent behaviour in compression (the most affected properties) is not fundamental, with the additional advantages of reduced density and increased content of bio‐derived components. © 2017 Society of Chemical Industry  相似文献   

14.
Foaming temperature and grade of dry natural rubber were varied to evaluate their effects on the morphology and mechanical properties of natural rubber (NR) foams. Three different grades of NR were used; namely ENR‐25, SMR‐L, and SMR‐10. NR foams from these grades were produced at three different foaming temperatures, i.e. 140, 150, and 160°C. The study was carried out using formulated compositions containing sodium bicarbonate as the chemical blowing agent and were expanded using conventional compression molding technique via a heat transfer foaming process. The NR foams were characterized with respect to their relative foam density, density of crosslinking, cell size, compression stress, and compression set. Increase in foaming temperature resulted in lower relative density and larger cell size. It was also discovered that the crosslink density slightly decrease with increasing foaming temperature. For mechanical properties, the highest foam density resulted in the highest compression stress. Compression stress at 50% strain increased with increasing foaming temperature and ENR‐25 foam has the highest compression stress among the produced foams. The results showed that the morphology, physical, and mechanical properties of the rubber foams can be controlled closely by the foaming temperature and rubber grades. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Epoxy composite foams with improved heat‐resistant property and efficient electromagnetic interference shielding effectiveness (EMI SE) were fabricated through a two‐step foaming technique. A sort of novel and untraditional expandable microspheres was adopted to reduce the density of prepared materials. A multiscale conductive network system composed of multiwalled carbon nanotubes (MWCNTs) and nickel‐plated carbon fibers (NiCFs) was introduced in these foams. Benefitting from the synergistic effect between NiCFs and MWCNTs, the multiscale epoxy foam with best comprehensive performance achieved a greatly enhanced Tg at 178.3 °C and an exceptional specific EMI SE ranging from 52.8 to 72.6 dB cm3 g?1 in X band (8.2–12.4 GHz) at low filler loading. These properties are greatly better than original epoxy foam with a Tg of 157.8 °C and specific EMI SE of 1.0–6.4 dB cm3 g?1. Their shielding mechanisms were discussed and the results showed that reflection is dominating. The effects of microspheres content, foaming temperature, NiCFs content, and length were investigated. In general, we provided a feasible, convenient and cost‐effective method to fabricate light‐weight, heat‐resistant thermosetting epoxy foams with sufficient EMI shielding performance which has a potential to be applied in aerospace or electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46013.  相似文献   

16.
Biobased and open cell polyurethane (PU) foams are produced from a synthesized sorbitol‐based polyester polyol. Different formulations are developed with various blowing agent systems (chemical vs physical blowing). Synthetized foams are fully characterized and compared. The cell morphology is carefully investigated by tomography and scanning electron microscopy. The chemical nature of the primary compounds, foaming kinetics, density, thermal behavior, and conductivity are fully studied, with also the main transition materials temperatures. It is shown that blowing agents especially impact the foaming kinetics. In the case of chemically blowing foams, higher foaming rate and temperatures are obtained. The mechanical behavior is particularly analyzed using quasi‐static compression tests, according two main axes compared to the rise direction. A direct relationship is observed between the formulation, foam structure, foam morphology, and corresponding mechanical properties. Results clearly highlight unexpected properties of biobased PU foams with unveil anisotropic mechanical properties.  相似文献   

17.
Water‐blown rigid polyurethane foams from soy‐based polyol were prepared and their structure–property correlations investigated. Cellulose microfibers and nanoclays were added to the formulations to investigate their effect on morphology, mechanical, and thermal properties of polyurethane foams. Physical properties of foams, including density and compressive strength, were determined. The cellular morphologies of foams were analyzed by SEM and X‐ray micro‐CT and revealed that incorporation of microfibers and nanoclays into foam altered the cellular structure of the foams. Average cell size decreased, cell size distribution narrowed and number fractions of small cells increased with the incorporation of microfibers and nanoclays into the foam, thereby altering the foam mechanical properties. The morphology and properties of nanoclay reinforced polyurethane foams were also found to be dependent on the functional groups of the organic modifiers. Results showed that the compressive strengths of rigid foams were increased by addition of cellulose microfibers or nanoclays into the foams. Thermogravimetric analysis (TGA) was used to characterize the thermal decomposition properties of the foams. The thermal decomposition behavior of all soy‐based polyurethane foams was a three‐step process and while the addition of cellulose microfibers delayed the onset of degradation, incorporation of nanoclays seemed to have no significant influence on the thermal degradation properties of the foams as compared to the foams without reinforcements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In this work, a series of flexible polyimide composite foams with dianhydride and isocyanate as the starting materials were prepared by pre‐dispersing vermiculite in isocyanate. The experimental results revealed that the cellular diameter of foams obviously decreased with the addition of vermiculite. The open cell content decreased with the increase of vermiculite, and foams containing vermiculite possessed higher apparent densities of about 10 kg/m3 when compared with the neat polyimide foams. The compressive strength was dramatically enhanced by vermiculite incorporation, and reached maximum when the filler content was 2%, indicating dramatically reinforcing effect of vermiculite. With the addition of vermiculite, the thermal stability and flame resistance of polyimide foams were improved. The limiting oxygen index of polyimide foams showed an increase from 31 to 33.5% with increase of vermiculite from 0 to 8% and the peak heat release rate decreased, indicating high flame retardant properties. Vermiculites possess excellent heat insulation and high temperature stability. When conditioned at high temperature, the filler would block the heat transfer during the bulk foam. Therefore, it is feasible to further increase the mechanical and thermal properties of polyimide foams by vermiculite filling. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44828.  相似文献   

19.
To reduce environmental pollution and oil shortages, biodegradable polylactide (PLA) from plants was used to replace synthetic plastic from petroleum. In this study, high‐melt‐viscosity PLA was achieved through the in situ reaction of carboxyl‐ended polyester (CP) and solid epoxy (SE) first; then, PLA foams were successfully prepared by a chemical compression‐molding method. The detailed foaming factors were also studied, including the decomposition temperature of the blowing agent, the foam temperature, and the open‐mold temperature. The results reveal that the obtained PLA foams had good water absorption and degradable properties, and the foam density was low as 0.16 g/cm3. Moreover, the effects of the CP/SE concentration and the AC content on the properties of the foams were also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Rigid crosslinked poly(vinyl chloride) (c‐PVC) foams by forming semi‐interpenetrating network (SIPN) structure via the reaction of phthalic anhydride (PA) and diisocyanate were prepared. The influence of PA on hierarchical structure and mechanical properties of c‐PVC foam was studied. The Fourier transform infrared spectrometer results showed that the presence of PA resulted in the formation of imide structure in the SIPN of obtained c‐PVC foams, which introduced a structural defect of SIPN. Thus, the residue (gel) from tetrahydrofuran extraction of the foams decreased with the increase of PA content. Dynamic thermal analysis showed the presence of three aggregation state structures in the c‐PVC foams, depending on the loading of PA. The addition of PA in the formulations affected cellular structure and mechanical properties of the obtained foams. Furthermore, the influence of chemical environment of anhydride compounds on the formation of imide structure in the crosslinking network of c‐PVC foams was discussed. A strategy for reducing defect of crosslinking network and improving mechanical properties was put forward. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46141.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号