首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene‐b‐poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g?1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g?1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm?1, compared with the blend, 1–6 mS cm?1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene‐based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41596.  相似文献   

2.
The prediction of the morphology of ternary polymer blends requires a good knowledge of the values of the three interfacial tensions. We selected three polymers, either biobased or biodegradable, polyamide (PA), poly[(butylene adipate)‐co‐terephthalate] (PBAT) and polylactide (PLA), and we accurately measured their interfacial tensions using the retraction method, varying the molar mass or inverting the phases. The following values of interfacial tension were obtained: γPBAT/PLA = 3.3 ± 0.7 mN m?1, γPA/PLA = 5.6 ± 0.3 mN m?1 and γPBAT/PA = 3.0 ± 0.4 mN m?1. These values were used to calculate the spreading coefficients giving rise to two negative coefficients and one coefficient close to zero. Ternary blends with various compositions, two different levels of viscosity for PBAT and different processing conditions were prepared. There was a very good agreement between the predictions of the spreading theory, when using the values of interfacial tension of the right order of magnitude, and the observed morphologies, whatever the polymer serving as a matrix. When PLA or PBAT was chosen as the matrix, the ternary blend morphology was composed of composite droplets, presenting a partial wetting morphology, dispersed in the polymer matrix. This morphology was observed whatever the composition, the viscosity of the PBAT phase and the processing conditions. A further calculation of the free energy confirmed this morphology. The formation process of this semi‐encapsulated morphology was observed during blending. © 2018 Society of Chemical Industry  相似文献   

3.
In this study, interaction and compatibility between sugar‐beet pulp (SBP) and polyvinyl alcohol (PVA) in blend films was assessed. Film‐forming dispersions of different ratios of SBP to PVA (100/0, 75/25, 50/50, and 25/75) were cast at room temperature. The effects of adding PVA to SBP on the resulting film's physical, mechanical and barrier properties and thermal stability were investigated. X‐ray diffraction and environmental scanning electron microscopy (ESEM) were used to characterize the structure and morphology of the composites. When PVA was also added to the composite films, the films became softer, less rigid and more stretchable than pure SBP films. The addition of PVA gave significantly greater elongation at break (12.45%) and lower water vapor permeability (1.55 × 10?10 g s?1 m?1 Pa?1), but tensile strength did not markedly change, remaining around 59.68 MPa. Thermogravimetric analysis also showed that SBP/PVA film had better thermal stability than SBP film. The ESEM results showed that the compatibility of SBP50/PVA50 was better than those of other composite films. These results suggest that when taking all the studied variables into account, composite films formulated with 50% PVA are most suitable for various packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41354.  相似文献   

4.
A series of LDPE/PVA blend films were prepared via a twin‐screw extruder, and their morphology, thermal property, oxygen and water vapor permeation, surface properties, and mechanical properties were investigated as a function of the PVA content. During the extrusion process of the blend films, glycerin improved the compatibility and processing conditions between LDPE and PVA. The melting temperature (Tm), melting enthalpy (ΔHm), crystallinity (%), and thermal stability of the thermal decomposition temperature (T5%) of the LDPE/PVA blend films decreased with increasing PVA content. The oxygen permeabilities of the blend films decreased from 24.0 to 11.4 cm3·cm (m2·day·atm)?1 at 23°C. The WVTR increased from 7.8 to 15.0 g(m2 day)?1 and the water uptake increased from 0.13 to 9.31%, respectively. The mechanical properties of blend films were slightly enhanced up to 2% PVA and then decreased. The physical properties of the blend films strongly varied with the chemical structure and morphology depending on the PVA and glycerin. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41985.  相似文献   

5.
Release kinetics of thymoquinone and R ‐(+)‐pulegone impregnated in low‐density polyethylene (LDPE) films into air and the effect of supercritical CO2‐assisted impregnation process on the diffusional properties of these films were investigated. The incorporation of both ketones into LDPE films was performed under different conditions (pressure, depressurization rate, time, and initial ketone mole fraction). Release experiments were performed under controlled laboratory conditions (24 °C, 60% relative humidity), and the total release profile was determined gravimetrically, while the individual release of each ketone was quantified by Fourier transformed infrared. The experimental data were used to fit a mass transfer model based on the second Fick's law for unsteady‐state diffusion, and the diffusion coefficients of both ketones in LDPE were estimated, ranging from 2.35 × 10?13 to 5.53 × 10?13 m2 s?1 (thymoquinone) and from 1.24 × 10?13 to 4.52 × 10?13 m2 s?1 (pulegone). Finally, analysis of variance testing indicated that impregnation pressure and depressurization rate (and their combination) have significant effects on the diffusion coefficient values. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45558.  相似文献   

6.
The objective of this work was to develop biodegradable films using fibrous residue from the extraction of cassava starch and to investigate its effect as a reinforcement agent in polymeric films. Micrographs (SEM) showed that the obtained films presented smooth surfaces with no cracking. The addition of fibers affected the properties of the films significantly (p < 0.05), reducing water vapor permeability values (from 8.63 ± 0.15 × 10−11 g.m.m−2.s−1.Pa−1 to 3.33 ± 0.16 × 10−11 g.m.m−2.s−1.Pa−1) and increasing the maximum tensile strength (from 1.23 ± 0.15 MPa to 7.78 ± 0.83 MPa). These results encourage the use of cassava bagasse as a reinforcement in the production of green composites as packaging. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47224.  相似文献   

7.
M. Zielinska 《Drying Technology》2016,34(10):1147-1161
The objective of this study was to dry–wet distillers grains and centrifuged solubles and to examine the effect of two different drying media, superheated steam and hot air, at different drying temperatures (110, 130, and 160°C), moisture contents (5–30% wb), and percentages of solubles’ presence (0 or 100%) on some thermophysical properties of laboratory-prepared corn/wheat dried distillers co-products, including geometric mean diameter (dg), particle density (ρp), bulk density (ρb), bulk porosity (?b), specific heat (C), effective thermal diffusivity (αeff), and bulk thermal conductivity (λb). The values of dg of corn/wheat dried distillers co-products ranged from 0.358 ± 0.001 to 0.449 ± 0.001 mm. Experimental values of ρp, ρb, and ?b varied from 1171 ± 6 to 1269 ± 3 kg m?3, from 359 ± 7 to 605 ± 5 kg m?3, and from 0.54 ± 0.01 to 0.71 ± 0.01 kg m?3, respectively. The values of αeff were between 0.58 × 10?7 and 0.93 × 10?7 m2 s?1. The calculated values of C ranged from 1887 ± 11 to 2599 ± 19 J kg?1 K?1, and the values of λb of corn/wheat dried distillers co-products ranged from 0.06 ± 0.01 to 0.09 ± 0.01 W m?1 K?1. Multiple linear regression prediction models were developed to predict the changes in dg, ρp, ρb, ?b, C, αeff, and λb of laboratory-prepared corn/wheat dried distillers co-products with different operational factors.  相似文献   

8.
Starch/polyvinyl alcohol (PVA) nanocomposite films by film blowing process were successfully obtained. Starch (1700 g), PVA (300 g), and organically modified montmorillonite (OMMT, 200 g) were blended and plasticized with acetyl tributyl citrate (ATBC) and glycerol (GLY) at weight ratios of 0/100, 5/95, 10/90, 15/85, 20/80, and 25/75. The structural, morphology, barrier, mechanical, and thermal properties of the films, as well as molecular interactions in the nanocomposites were analyzed. The 3.98 nm d‐spacing was the highest in starch/PVA nanocomposite films plasticized with ATBC/GLY ratio of 10/90. The film with ATBC/GLY (5/95) had the lowest WVP (3.01 × 10?10 g m?1 s?1 Pa?1). The longitudinal tensile strength (TS) of starch/PVA nanocomposite films gradually increased from 4.46 to 6.81 MPa with the increase of ATBC/GLY ratios. The Tg steadily increased from 49.2°C to 55.2°C and the ΔH of the nanocomposite films decreased from 81.77 to 51.43 J/g at the presence of ATBC. The addition of ATBC into GLY plasticized starch/PVA/OMMT system enhanced the intermolecular interaction in the nanocomposites. This study proved that ATBC was an excellent compatibilizer in the preparation of starch/PVA/OMMT nanocomposite films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42544.  相似文献   

9.
A fast, nondestructive method based on the determination of local concentration profiles in the polymer thickness with Raman microspectroscopy is presented here. It was used to assess the diffusivity of a model molecule (p‐terphenyl) in amorphous polystyrene films at 95°C (2.38 ± 1.08 × 10?17 m2/s). This methodology was validated by comparison with a more classical destructive approach based on the monitoring of the concentration evolution in the whole of the film with gas chromatography (89.4 × 10?17 m2/s). These values were in agreement with data available in the literature for molecules of the same molecular weight and temperature range determined with local measurement and were significantly lower than those determined by global measurement. Raman microspectroscopy was found to be adapted to slow diffusion speeds typically found in high‐barrier polymers; this allowed diffusivity to be obtained long before the equilibrium was reached and, thus, without the need for the partition coefficient. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40958.  相似文献   

10.
This paper reports a range of effective sequential chemical processes to enhance the thermoelectric performance of conducting poly(3,4‐ethylenedioxythiophene) films doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of the PEDOT:PSS films was significantly increased from 0.33 to 3748 S cm?1 after a series of sequential treatments with trifluoroacetic acid (TFA) while the Seebeck coefficient and thermal conductivity were slightly reduced from 17.5 ± 1.2 to 16.0 ± 1.1 μV K?1 and 0.537 to 0.415 W m–1 K?1 for the pristine film and treated film, respectively, leading to a significant improvement in power factor up to 97.1 ± 5.4 μW m–1 K?2. More importantly, around 80% of the electrical conductivity and Seebeck coefficient was retained after 20 days for these TFA‐treated PEDOT:PSS films, revealing the potential for real thermoelectric applications. © 2019 Society of Chemical Industry  相似文献   

11.
Thin films of different thicknesses were prepared through glow discharge of 2‐(diethylamino)ethyl methacrylate (DEAEMA) using a capacitively coupled reactor. Current density–voltage (J–V) characteristics for plasma polymerized (PP) DEAEMA thin films of thicknesses 100, 200, 250, and 300 nm in aluminum/PPDEAEMA/aluminum sandwich configuration were studied over the temperature range from 298 to 423 K. JV curves reveal that in the low‐voltage region, the conduction current obeys Ohm's law while in the high‐voltage region the behavior attributed to be space charge‐limited conduction in PPDEAEMA thin films. The carrier mobility was calculated to be about 6.80 × 10?19 to 2.38 × 10?18 m?2 V?1s?1 for various thicknesses. The free carrier density was found to be about 1.78 × 1023 to 2.04 × 1023 m?3, and the trap density was found to be about 6.93 × 1023 to 15.9 × 1023 m?3 for different thicknesses. The activation energies were estimated to be about 0.005–0.016 eV for 2 and 30 V of PPDEAEMA thin films of different thicknesses. The low‐activation energies indicate that the thermally activated hopping conduction is operative in PPDEAEMA thin films. POLYM. ENG. SCI., 55:2729–2734, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
Blend films were prepared from poly(L -lactide) (PLLA) and poly(E-caprolactone) (PCL) with different PLLA contents [XPLLA (w/w) = PLLA/(PCL + PLLA)] by the solution-casting method and their hydrolysis behaviors were investigated up to 20 months in a phosphate-buffered solution of pH 7.4 at 37°C by gel permeation chromatography, tensile testing, differential scanning calorimetry, and gravimetry. Polarizing microscopic observation and dynamic mechanical analysis revealed that PCL and PLLA were phase-separated in blend films before hydrolysis. The mass remaining, molecular weight, and tensile strength of the blend films with XPLLA of 0.5 and 0.75 decreased more rapidly by hydrolysis than those of the nonblended PLLA, while the elongation at break of the blend film of XPLLA = 0.25 decreased the slowest. The rate constant for hydrolysis (k) calculated from the Mn change during hydrolysis was higher for blend films of XPLLA = 0.5 and 0.75 than those expected from k of nonblended PLLA and PCL. The melting temperature (Tm) of PLLA in the blend and nonblended films of XPLLA = 0.5, 0.75, and 1 decreased from 179 to 161, 160, and 175°C upon hydrolysis for 20 months, respectively, while that for XPLLA = 0.25 slightly increased from 176 to 177°C. On the other hand, Tm and the crystallinity of PCL was significantly increased by hydrolysis for 20 months, irrespective of XPLLA. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 405–415, 1998  相似文献   

13.
Polypropylene (PP) composite films were successfully prepared using melt blending by directly mixing PP pellets with zeolite A or silver‐zeolite A powder and then blowing. All the prepared films were characterized in terms of their physical, mechanical, optical, and gas permeability properties. The structure of each composite film was similar to that of the pure PP film. The crystallinity and glossy quality of the composite films were increased by the addition of silver, zeolite, and maleic anhydride grafted PP (PP‐g ‐MA). The composite PP film with zeolite A and PP‐g ‐MA exhibited a level of oxygen and carbon dioxide permeation (6438 and 15,087 cc m?2 day?1 atm?1, respectively). Finally, all the films were evaluated for their antibacterial activity and fruit packaging applications. Silver‐zeolite A‐PP composite films exhibited a bactericidal activity of 79% against Staphylococcus aureus and 52% against Escherichia coli , while the zeolite A‐PP film could extend the shelf‐life of bananas for over a week. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45450.  相似文献   

14.
The blend films of polyurethane (PU) and amino‐terminal hyperbranched polymers (HBP‐NH2) were prepared successfully by mixing HBP‐NH2 solution and PU. The rate of moisture absorption and mechanical properties were determined. The results showed that the rates of moisture absorption and vapor permeability were improved from 0.34% to 7.51% and from 161 gm?2 d?1 to 879 gm?2 d?1, respectively. The addition of HBP‐NH2 is helpful to improve the hygiene properties of PU films. Then, the structures of the blend films were characterized by IR, XRD, TG, and SEM at the same time. The results indicated that HBP‐NH2 and PU had hydrogen‐bond interaction and a certain phase separation. The blend films had good heat stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41383.  相似文献   

15.
Porous poly(L ‐lactide) (PLLA) films were prepared by water extraction of poly(ethylene oxide) (PEO) from solution‐cast PLLA and PEO blend films. The dependence of blend ratio and molecular weight of PEO on the porosity and pore size of films was investigated by gravimetry and scanning electron microscopy. The film porosity and extracted weight ratio were in good agreement with the expected for porous films prepared using PEO of low molecular weight (Mw = 1 × 103), but shifted to lower values than expected when high molecular weight PEO (Mw = 1 × 105) was utilized. The maximum pore size was larger for porous films prepared from PEO having higher molecular weight, when compared at the same blending ratio of PLLA and PEO before water extraction. Differential scanning calorimetry of as‐cast PLLA and PEO blend films revealed that PLLA and PEO were phase‐separated at least after solvent evaporation. On the other hand, comparison of blend films before and after extraction suggested that a small amount of PEO was trapped in the amorphous region between PLLA crystallites even after water extraction and hindered PLLA crystallization during solvent evaporation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 629–637, 2000  相似文献   

16.
Poly(l ‐lactic acid)/crosslinked polyurethane (PLLA/CPU) blends which were prepared via reactive blending of PLLA with poly(?‐caprolactone) (PCL), glycerol and 4,4′‐methylenediphenyl diisocyanate showed excellent toughness. The effects of the composition of the mixture and degree of crosslinking of CPU on the toughness of the PLLA/CPU blends (80/20 w/w) were studied in detail. Dynamic mechanical analysis and rheological measurements were used to characterize the structure of the in situ formed CPU in the PLLA matrix. A novel netlike phase structure was observed when the average molecular weight of PCL and degree of crosslinking were 1 kDa and 10%, respectively. The impact strength of the blend was enhanced from 2.2 kJ m?2 for pure PLLA to 62.4 kJ m?2; meanwhile, the elongation at break was increased to 489.8%. Therefore, the mechanical properties of PLLA/CPU blends can be easily tailored by tuning the composition of the mixture and the degree of crosslinking of CPU. © 2018 Society of Chemical Industry  相似文献   

17.
Novel conducting polyaniline (PANI)/cyanoresin (Cyan) blends were prepared by the addition of Cyan/dimethylformamide solutions to aniline monomer/dopant solutions and the in situ chemical oxidative polymerization of aniline with ammonium persulfate as an oxidant in aqueous p‐toluene sulfonic acid solutions. The PANI/Cyan blends were prepared with various compositions (5:95, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, and 70:30), and blend films of PANI/Cyan were obtained with a casting method. The conductivity of the PANI/Cyan blend films was 10?7 to 10?2 S/cm, which was measured by a four‐probe technique. The tensile strength of the blend films was maintained with an increasing amount of PANI (up to 50 wt %), and this was attributed to intermolecular interactions such as hydrogen bonding between PANI and Cyan and a reinforcing effect through blending. This hypothesis was corroborated by Fourier transform infrared spectroscopy. Field emission scanning electron microscopy and thermogravimetric analysis were also used to investigate the morphology and thermal properties of the conducting PANI/Cyan blend films, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1035–1042, 2005  相似文献   

18.
This study evaluated the bond strength of relining materials to different denture base materials polyamide and polymethylmethacrylate denture base materials after various surface conditioning methods. Denture base resin specimens (N?=?128; n?=?8 per group) (10?×?10?×?2.5?mm3) were fabricated out of injection-moulded thermoplastic polyamide resin (POL) (Deflex) and heat-polymerized polymethylmethacrylate (PMMA, Dura Dent) (HC). The specimens were randomly divided into 4 main groups according to different surface conditioning methods: (a) No conditioning, control (C), (b) grinding with green stone (G), (c) application of primer (V), (d) silica coating with Al2O3 particles coated with SiO2 (Rocatec) (R). Half of the specimens in each group received auto-polymerized hard relining resin (GC, GC Reline Hard) and the other half PMMA based relining resin (SC, Dura Dent). After thermocycling (×5000), the bonded specimens were tested under tensile forces (0.5?mm/min). Data (MPa) were analyzed using Mann–Whitney U and Kruskal–Wallis tests (alpha = 0.05). Bond strength of relining resins were significantly higher to PMMA than to POL, regardless of the conditioning method (p?<?0.05). While R positively affected the bond strength results (p?<?0.05) (4.99?±?1.65–3.27?±?1.31), application V or G did not show significant effect to POL-relining resin adhesion. After R conditioning, bond strength values were significantly higher in HC-GC group (7.48?±?2.32) than POL-GC group (3.27?±?1.31) (p?<?0.05). Adhesion of auto-polymerized relining materials to thermoplastic polyamide or polymethylmethacrylate denture resins could be improved after surface conditioning with silica-coating.  相似文献   

19.
Proton exchange membranes (PEMs) based on blends of poly(ether sulfone) (PES) and sulfonated poly(vinylidene fluoride‐co‐hexafluoropropylene) (sPVdF‐co‐HFP) were prepared successfully. Fabricated blend membranes showed favorable PEM characteristics such as reduced methanol permeability, high selectivity, and improved mechanical integrity. Additionally, these membranes afford comparable proton conductivity, good oxidative stability, moderate ion exchange capacity, and reasonable water uptake. To appraise PEM performance, blend membranes were characterized using techniques such as Fourier transform infrared spectroscopy, AC impedance spectroscopy; atomic force microscopy, and thermogravimetry. Addition of hydrophobic PES confines the swelling of the PEM and increases the ultimate tensile strength of the membrane. Proton conductivities of the blend membranes are about 10?3 S cm?1. Methanol permeability of 1.22 × 10?7cm2 s?1 exhibited by the sPVdF‐co‐HFP/PES10 blend membrane is much lower than that of Nafion‐117. AFM studies divulged that the sPVdF‐co‐HFP/PES blend membranes have nodule like structure, which confirms the presence of hydrophilic domain. The observed results demonstrated that the sPVdF‐co‐HFP/PES blend membranes have promise for possible usage as a PEM in direct methanol fuel cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43907.  相似文献   

20.
The equilibrium and kinetics of solvent extraction of Cu2+ from aqueous solutions containing equimolar EDTA with Aliquat 336 in n‐decanol and kerosene at 298 K were investigated. The concentrations of Cu2+ (8–50 mol m?3), Cl? (5–60 mol m?3), and Aliquat 336 (20–100 mol m?3) were varied. A semi‐empirical model with three parameters was proposed to describe the equilibrium behavior, in which the non‐idealities in both aqueous and organic phases were considered. Over the ranges studied, the model agreed reasonably well with the experimental data (standard deviation, 15%). The forward and backward reaction rate constants were determined as (5.31 ± 0.16)×10?6 m9/4 mol?3/4 s?1 and (2.62 ± 0.09)×10?7 s?1, respectively, at 298 K. An interfacial reaction mechanism was proposed, which revealed that the reaction between the chelated anions and trimeric amine molecules at the interface was rate limiting. The derived rate laws were consistent with the experimental results. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号