首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain cured epoxy resin (EP) with satisfactory thermal stability and flame retardancy, a multi-element P/N/Si-containing flame retardant (DPAK) was synthesized by a facile way and was used as a reactive flame retardant to prepare flame-retardant EP. The flame-retardant efficiency of DPAK was subsequently evaluated by limiting oxygen index (LOI), UL-94, and cone calorimeter (CC) test. With a low incorporation amount of DPAK (4 wt%), the resultant EP achieve to UL-94 V-0 rating, and the corresponding LOI value reached to 30%, which was higher than that of EP containing DOPO (2.9 wt%). More importantly, the thermogravimetric analysis (TGA) revealed their higher thermal stability than those of EP containing DOPO. Furthermore, dynamic mechanical analysis (DMA) shown the maintained glass transition temperature of DPAK-EP. The increase of CO/CO2 ratio in the CC test for the DPAK-EP samples proved the gas-phase activity of DPAK. Additionally, DPAK showed evidence of condensed phase activity by increasing char residue in TGA and CC test. The scanning electronic microscope together with the energy dispersive X-ray spectrometer (SEM–EDX) and X-ray photoelectron spectroscopy (XPS) exhibited that DPAK promoted the formation of compacted phosphorus-silicon char layer. Subsequently, TG-FTIR results indicated that DPAK-EP produced lesser combustible gases than neat sample did, improving flame-retardant properties of epoxy resin.  相似文献   

2.
Ammonium polyphosphate (APP)–polystyrene (PSt) core–shell microspheres (CSPs) were synthesized via in situ radical polymerization. The core–shell structure was confirmed by transmission electron microscope (TEM). The results of optical contact angle measurements demonstrated a significant improvement in hydrophobicity of the modified APP. The obtained APP–PSt CSPs were added into epoxy (EP) system with various loadings. Effects of CSP on flame retardancy, thermal properties, heat release rate (HRR), smoke production, and mechanical properties of EP/CSP composites were investigated by limiting oxygen index (LOI), UL‐94 tests, thermogravimetric analysis (TGA), cone calorimeter, and tensile test. LOI and UL‐94 indicated that CSP remarkably improved the flame retardancy of EP composites. TGA showed that the initial decomposition temperature and the maximum‐rate decomposition temperature decreased, whereas residue yields at high temperature increased with the incorporation of microspheres. Cone calorimetry gave evidence that HRR, peak release rate, average HRR, and smoke production rate of EP/CSP composites decreased significantly. The morphology of char residues suggested that CSP could effectively promote EP to form high‐quality char layer with compact outer surface and swollen inner structure. Tensile strength of EP was enhanced with the addition of CSP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40218.  相似文献   

3.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
反应型DOPO基阻燃剂在环氧树脂中的应用   总被引:3,自引:0,他引:3  
综述了近年来在反应型DOPO基(9,10-二氢-9-氧-10-磷杂菲-10-氧化物)阻燃剂中引入羟基、羧基、氨基等基团以及与氰酸酯加成得到具有阻燃性的环氧树脂固化剂以及在DOPO衍生物中引入环氧基,制备本质阻燃环氧树脂的研究进展。  相似文献   

5.
A novel phosphonate flame retardant additive bis(2,6‐dimethyphenyl) phenylphosphonate (BDMPP) was synthesized from phenylphosphonic dichloride and 2,6‐dimethyl phenol, and its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance. The prepared BDMPP and curing agent m‐phenylenediamine were blended into epoxy resins (EP) to prepare flame retardant EP thermosets. The effect of BDMPP on fire retardancy and thermal degradation behavior of EP/BDMPP thermosets was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter and thermalgravimetric analysis (TGA). The morphologies of char residues of the EP thermosets were investigated by scanning electron microscopy (SEM) and the water resistant properties of thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the cured EP/14 wt % BDMPP composites with the phosphorus content of 1.11 wt % successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.8%. The TGA results indicated that the introduction of BDMPP promoted EP matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield at high temperature. The incorporation of BDMPP enhanced the mechanical properties and reduced the moisture absorption of EP thermosets. The morphological structures of char residue revealed that BDMPP benefited to the formation of a more compact and homogeneous char layer on the materials surface during burning, which prevented the heat transmission and diffusion, limit the production of combustible gases and then lead to the reduction of the heat release rate. After water resistance tests, EP/BDMPP thermosets still remained excellent flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42765.  相似文献   

6.
An epoxy resin (EP) with excellent fire retardancy, good transparency, and satisfactory thermal stability has been obtained by introducing a new N/P/S containing flame retardant (HBD) into EP composites. When the phosphorus content was 0.48 wt%, EP/HBD reached V-0 rating with the limiting oxygen index of 33.5%. The cone calorimeter test (CC) indicated that the incorporation of HBD resulted in 1.5 times increase in ignition time, a 50% decrease in the maximum of heat release rates, 40% reduction of total heat release, and 50.7% decrease in total smoke production compared with EP. Besides, the fire-resistant behavior of EP/8% HBD is much better than the EP materials modified by similar P/N/S flame retardants reported in literature. The fire-retardant mechanism of HBD on EP was also analyzed by Raman, scanning electron microscope, Py-GC/MS, and Fourier transform infrared spectroscopy. The results show that HBD plays an important role in the formation of a dense intumescent carbon layer and gas phase quenching.  相似文献   

7.
A novel P? C? N bond containing azaphosphorine, 5‐(4‐hydroxy)anilinomethyl‐1,3‐di(4‐hydroxy)phenyl‐1,3,5‐diazaphosphorinane (ADDPP‐OH), which could be used as both a cocuring agent and a flame‐retarding agent for epoxy resins (EPs), was synthesized from tetrakis(hydroxymethyl)phosphonium sulfate and characterized by FTIR, 1H‐NMR, 13C‐NMR, 31P‐NMR, and so on. Compared with the pure EP, the ADDPP‐OH–EP composites showed increased decomposition temperatures and char yields. When the content of ADDPP‐OH was 10 wt %, the cured EP composite possessed a limiting oxygen index value of 33.7% and passed the V‐0 rating of the UL‐94 test. The mechanical properties of the ADDPP‐OH–EP composites was improved because of the increased crosslinking density. In addition, the morphology of the residual char indicated an intumescent and multiporous structure in the inner space and a compact and continual appearance in the outer layer; this was important in preventing the materials from burning further. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45721.  相似文献   

8.
Two phosphorus‐containing phenolic amines, a 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based derivative (DAP) by covalently bonding DOPO and imine (SB) obtained from the condensation of p‐phenylenediamine with salicylaldehyde, and its analog (AP) via the addition reaction between diethyl phosphite and SB, were used to prepare flame‐retardant epoxy resins. The burning behaviors and dynamic mechanical properties of epoxy thermosets were studied by limited oxygen index (LOI) measurement, UL‐94 test, and dynamic mechanical analysis. The flame‐retardant mechanisms of modified thermosets were investigated by thermogravimetric analysis, Py‐GC/MS, Fourier transform infrared, SEM, elemental analysis, and laser Raman spectroscopy. The results revealed that epoxy thermoset modified with DAP displayed the blowing‐out effect during UL‐94 test. With the incorporation of 10 wt % DAP, the modified thermoset showed an LOI value of 36.1% and V‐0 rating in UL‐94 test. The flame‐retardant mechanism was ascribed to the quenching and diluting effect in the gas phase and the formation of phosphorus‐rich char layers in the condensed phase. However, the thermoset modified with 10 wt % AP only showed an LOI value of 25.7% and no rating in UL‐94 test, which was possibly ascribed to the mismatching of charring process with gas emission process during combustion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43953.  相似文献   

9.
A flame retardant tri‐(phosphaphenanthrene‐(hydroxyl‐methylene)‐phenoxyl)‐1, 3, 5‐triazine (Trif‐DOPO) and its control samples are incorporated into diglycidyl ether of bisphenol‐A (DGEBA) and 4, 4′‐diamino‐diphenyl sulfone (DDS) to prepare flame retardant thermosets, respectively. According to the results of limited oxygen index (LOI), UL94 vertical burning test and cone calorimeter test, the Trif‐DOPO/DGEBA/DDS thermoset with 1.2 wt % phosphorus possesses the LOI value of 36% and UL94 V‐0 flammability rating, and Trif‐DOPO can decrease the peak of heat release rate (pk‐HRR) and reduce the total heat release (THR) of thermosets. All these prove better flame retardant performance of Trif‐DOPO than that of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide(DOPO). The residue photos of thermosets after cone calorimetry test disclose that Trif‐DOPO can promote the formation of thick and tough melting char layer for combined action of the flame retardant groups of Trif‐DOPO. The results from thermo gravimetric analysis (TGA) and pyrolysis‐gas chromatography‐mass spectrometry(Py‐GC/MS) show that the groups in Trif‐DOPO can be decomposed and produce PO2 fragments, phosphaphenanthrene and phenoxy fragments, which can jointly quench the free radical chain reaction during combustion. Therefore, the excellent flame retardancy of Trif‐DOPO is attributed to its flame retardant group‐synergic‐effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39709.  相似文献   

10.
Flame retardant poly(lactic acid)/poly(butylene adipate-co- terephthalate) (PLA/PBAT) composites containing 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO) derivatives (phosphorus-containing diol compound of DOPO-HQ, and bis DOPO phosphonates of DIDOPO) were systematically and comparatively investigated. Results showed that the different structures of the two derivatives with reactable or soluble characteristics display different effects. DIDOPO endows a higher limiting oxygen index and a better UL-94 rating for PLA/PBAT composites compared with DOPO-HQ. Compared with that of PLA/PBAT, the peak heat release rate of PLA/PBAT/DIDOPO-12.5 is 8.4% lower and that of PLA/PBAT/DOPO-HQ-12.5 is 30.6% lower. The flame retardant mechanism of the main gaseous and minor condensed phases is evident for the flame retardant PLA/PBAT composites. In comparison, DIDOPO displays a greater flame inhibition effect, and DOPO-HQ shows better barrier and protective functions in PLA/PBAT composites. Besides, the elongation at break of the composites with DOPO-HQ is slightly superior to that of PLA/PBAT/DIDOPO. After the introduction of flame retardant, the blends show dispersed particles with size reduction relative to those of PLA/PBAT. This work provides a guidance to design PLA composites with simultaneously improved flame retardancy and toughness.  相似文献   

11.
To obtain a more efficient flame‐retardant system, the extra‐triazine‐rich compound melamine cyanurate (MCA) was coworked with tri(3‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl)?1,3,5‐triazine‐2,4,6‐trione (TGIC–DOPO) in epoxy thermosets; these were composed of diglycidyl ether of bisphenol A (DGEBA) epoxy resin and 4,4′‐diaminodiphenyl methane (DDM). The flame‐retardant properties were investigated by limited oxygen index measurement, vertical burning testing, and cone calorimeter testing. In contrast to the DGEBA/DDM (EP for short) thermoset with a single TGIC–DOPO, a better flame retardancy was obtained with TGIC–DOPO/MCA/EP. The 3% TGIC–DOPO/2% MCA/EP thermoset showed a lower peak heat‐release rate value, a lower effective heat of combustion value, fewer total smoke products, and lower total yields of carbon monoxide and carbon dioxide in comparison with 3% TGIC–DOPO/EP. The results reveal that MCA and TGIC–DOPO worked jointly in flame‐retardant thermosets. The dilution effect of MCA, the quenching effect of TGIC–DOPO, and their joint action inhibited the combustion intensity and imposed a better flame‐retardant effect in the gas phase. The 3% TGIC–DOPO/2% MCA/EP thermoset also exhibited an increased residue yield, and more compositions with triazine rings were locked in the residues; this implied that MCA/TGIC–DOPO worked jointly in the condensed phase and promoted thermoset charring. The results reveal the better flame‐retardant effect of the MCA/TGIC–DOPO system in the condensed phase. Therefore, the joint incorporation of MCA and TGIC–DOPO into the EP thermosets increased the flame‐retardant effects in both the condensed and gas phases during combustion. This implied that the adjustment to the group ratio in the flame‐retardant group system endowed the EP thermoset with better flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43241.  相似文献   

12.
Melamine poly(metal phosphates) (MPMeP) are halogen‐free flame retardants commercialized under the brand name Safire. Melamine poly(aluminum phosphate) (MPAlP), melamine poly(zinc phosphate) (MPZnP), and melamine poly(magnesium phosphate) (MPMgP) were compared in an epoxy resin (EP). The thermal decomposition, flammability, burning behavior, and glass transition temperature were investigated using thermogravimetric analysis, pyrolysis combustion flow calorimeter, UL 94 testing, cone calorimeter, and differential scanning calorimetry. While the materials exhibited similarities in their pyrolysis, EP + MPZnP and EP + MPMgP showed better fire behavior than EP + MPAlP due to superior protective properties of the fire residues. Maintaining the 20 wt % loading, MPZnP was combined with various other flame retardants. A synergistic effect was evident for melamine polyphosphate (MPP), boehmite, and a derivative of 6H‐Dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The best overall performance was observed for EP + (MPZnP + MPP) because of the best protection effectiveness of the fire residue. EP + (MPZnP + MPP) achieved V1/V0 in UL 94, and an 80% reduction in the peak heat release rate. This study evaluates the efficiency of MPMeP in EP, alone and in combination with other flame retardants. MPMeP is a suitable flame retardant for epoxy resin, depending on its kind and synergists. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43549.  相似文献   

13.
管仲达  黄红英  姚汉清 《浙江化工》2011,42(11):18-20,17
以邻苯基苯酚(oPP)与三氯化磷(Pcb)为原料,以无水ZnCl2为催化剂,采用酯化、酰基化、水解反应连续进行的方法制得中间体HPPA,HPPA再经分子内脱水成环反应制得DOPO。通过核磁共振氢谱对其结构进行了表征。讨论了投料比、反应温度、水解方式等因素对DOPO产率的影响。结果表明,当PCI。与OPP摩尔比为1.2,反应温度为180℃,在甲苯中水解,DOPO的产率达90.1%。  相似文献   

14.
This introduces an organic–inorganic thermosetting hybrid resin system based on unsaturated polyester and polysilazanes. It shows the chemical modification of unsaturated polyester structures by end capping to enable the combination of both components. In general, halogen‐free unsaturated polyesters are not fire‐retardant and have to be equipped with additives. Fillers and intumescent additives are preponderantly used in today's fire‐retardant formulations. In contrast to these fire‐retardants, polysilazanes act as ceramizing agents. Polysilazanes are suitable fire‐retardants for resin transfer molding due to their low viscosity. Both burning behavior and glass transition temperature (Tg) are investigated as important application properties. In contrast to state‐of‐the‐art fire‐retardant formulations polysilazane‐based thermosetting hybrid resins burn with high intensity and fast extinction. Therefore, total heat and smoke emission is decreased. The formation of ceramic structures during burning results in high residual mechanical properties and a low mass loss. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40375.  相似文献   

15.
In order to search for multifunctional epoxy thermosets (EP) with low flammability, high transparency and satisfied mechanical performance, DOPO-based phosphonate ammonium salt (DOA) was synthesized from 10-hydroxy-9,10-dihydro-9-oza-10-phosphaphenanthrene-10-oxide (DOPO-OH) and 2-amino-2-methyl-1,3-propanediol (AMPD). Under the influence of DOA, the flame-retardant and mechanical performances of the resulting EP were obviously improved. On account of the enhanced interaction and the incorporated flexible fragments in epoxy macromolecular chains, the tensile strength, elongation at break, and impact toughness of EP/5.0 wt% DOA significantly increased from 65.4 ± 1.2 MPa, 6.7 ± 0.6%, and 12.1 ± 1.3 kJ m−2 of EP to 81.4 ± 2.8 MPa, 10.6 ± 0.5%, and 18.0 ± 1.1 kJ m−2, respectively. In the presence of DOA, the limiting oxygen index (LOI) value of EP/5.0 wt% DOA increased to 35.5% and it passed the underwriter laboratories-94 vertical burning tests (UL-94 V) and got a V-1 rating. Moreover, the peak value of heat release rate (PHRR) was decreased by 38.0%. The analyses of char residues and volatile products showed that the activities of DOA on reducing the flammability of EP were ascribed to the protective effect of the char, the release of incombustible gases, and the radical-capture action of phosphorus-containing free radicals. Moreover, the modified epoxy thermosets still retained a high transparency.  相似文献   

16.
Polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DP) was used to flame‐retard 4,4′‐bismaleimidophenyl methane (BDM)/2,2′‐dially bisphenol A (DBA) resins, and the integrated properties of the resins were investigated. The fire resistance of BDM/DBA resins containing DP was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) tests. The results show that DP increased the LOI of the resins from 25.3 to 38.5%. The BDM/DBA resins were evaluated to have a UL‐94 V‐1 rating, which did not satisfy the high standards of industry. On the other hand, BDM/DBA containing DP achieved a UL‐94 V‐0 rating. The thermal stability and char formation were studied by thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. TGA and scanning electron microscopy–energy‐dispersive X‐ray spectrometry measurements demonstrated that the DP resulted in an increase in the char yield and the formation of the thermally stable carbonaceous char. The results of Raman spectroscopy showed that the DP enhanced the graphitization degree of the resin during combustion. Moreover, the modified BDM/DBA resins exhibited improved dielectric properties. Specifically, the dielectric constant and loss at 1 MHz of the BDM/DBA/15% DP resin were 3.11 and 0.008, respectively, only about 93 and 73% of those of the BDM/DBA resin. All of the investigations showed that DP was an effective additive for developing high‐performance resins with attractive flame‐retardant and dielectric properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41545.  相似文献   

17.
This work reports an effective self-intumescent flame retardant system for epoxy resin (EP) based on the remarkable synergistic effect between Cu2O and ammonium polyphosphate (APP). The effect of Cu2O/APP on improving EP's fire performance was evaluated by limited oxygen index (LOI), UL-94, and cone calorimeter test. The optimal mass ratio of Cu2O: APP was shown to be 2:8. With 15 wt% total flame retardant loading, the EP with optimum Cu2O/APP formulation reached V-0 classification and high LOI (33.5%), while the EP with APP only got NR and low LOI (26.5%). Additionally, the pHRR, total heat release, total smoke production, CO production of the EP with optimum Cu2O/APP formulation were primarily decreased. All the improvements were ascribed to the formation of the self-intumescent char layer of EP resulted from the catalyzing effect of Cu2O for char formation and CO to CO2 conversion. These findings will consolidate approaches for conferring flame retardancy to flammable polymers or their blends.  相似文献   

18.
A star‐shaped DOPO derivative (GL‐3DOPO, P content 10.8 wt %) was synthesized through a two‐step reaction involving glycerol, acryloyl chloride, and DOPO. The derivative demonstrated a great improvement of thermal decomposition temperature increased to 360 °C from 194 °C (under N2 atmosphere), promoting its application in thermoplastics of high processing temperature. When blended with engineering plastics including PET, PBT, PC, PA6, and PA66 at a GL‐3DOPO loading of 25 wt %, all the compounds reached the UL94 V‐0 level and increased limit oxygen index (LOI). In PET system, LOI raised from 22.8% to 35.4% with P 2.5 wt % and passed the V‐0 test with only 0.8 P wt %. Compact char layers were found in the PET system after LOI test, suggesting that GL‐3DOPO acted both in gas and condensed‐phase mode. All results indicated that GL‐3DOPO could be a potential flame‐retardant for engineering plastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44892.  相似文献   

19.
A novel amine‐terminated and organophosphorus‐containing compound m‐aminophenylene phenyl phosphine oxide oligomer (APPPOO) was synthesized and used as curing and flame‐retarding agent for epoxy resins. Its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance, and 31P nuclear magnetic resonance. The flame‐retardant properties, combusting performances, and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. The EPO/APPPOO thermosets passed V‐1 rating with the thickness of 3.0 mm and the LOI value reached 34.8%. The thermosets could pass V‐2 rating when the thickness of the samples was 1.6 mm. The cone calorimeter test demonstrated that the parameters of EPO/APPPOO thermosets including heat release rate and total heat release significantly decreased compared with EPO/PDA thermosets. Scanning electron microscopy revealed that the incorporation of APPPOO into epoxy resins obviously accelerated the formation of the compact and stronger char layer to improve flame‐retardant properties of the cured epoxy resins during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After the water‐resistance test, EPO/APPPOO thermosets still remained excellent flame retardant and the water uptake was only 0.4%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41159.  相似文献   

20.
Two phosphorus‐containing heterocyclic flame retardants ‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,8‐dimethyl‐phenoxaphosphin‐10‐oxide (DPPO) ‐ and their derivatives were characterized and incorporated in the backbone of epoxy novolac to obtain flame‐retardant epoxy resins. The structures and spectroscopic data including high‐resolution mass spectroscopy of these flame retardants were determined. Flame‐retardant epoxy resins with a phosphorus content of up to 2% based on heterocyclic DOPO and DPPO were cured with 4,4′‐diaminodiphenylmethane (DDM), and their features were examined by UL 94, LOI, and DSC. In this manner, high‐performance polymers with glass transition temperatures around 190°C and the UL 94 rating V0 were obtained. These polymers were compared with epoxy resins incorporating diphenyl phosphite and diphenyl phosphate, which are nonheterocyclic and do not pass the UL 94 test up to 2% phosphorus. DPPO has a similar flame retardancy like the commercially available DOPO. Furthermore, to explain the difference in the efficiency of the tested flame retardants, key experiments for the determination of the active species during the flame‐retarding process were performed and the PO radical was identified. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号