首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work focuses on the preparation of Polyphenylsulfone (PPSU) membranes with enhanced antifouling surfaces through an incorporation of sulfonated Polyphenylsulfone (PPSU‐SO3H), which acts as both, surface modifying agent and macromolecular additive. Initially, Sulfonated polyphenylsulfone (PPSU‐SO3H) was synthesized by using chlosulfonic acid via bulk modification method. The degree of sulfonation (DS, %) of PPSU‐SO3H was calculated by using NMR (nuclear magnetic resonance).The phase inversion technique was used to prepare all asymmetric membranes by allowing the PPSU‐SO3H (different wt %) to entangle with the PPSU membrane matrix. All prepared membranes were characterized by using scanning electron microscope (SEM), X‐ray diffraction analysis (XRD), contact angle analysis (CA), mechanical strength analysis, molecular weight cut off (MWCO), porosity (%), mean pore size, and BSA adsorption studies. The performance efficiency of the membranes was evaluated by using BSA protein as a model foulant in terms of permeability, rejection (SR %), Rm (hydraulic resistance), Rc (cake layer resistance), Rp (pore plugging resistance), Rr (reversible fouling), Rir (irreversible fouling), and FRR (flux recovery ratio). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41986.  相似文献   

2.
This work focuses on utilizing the dual role of sulfonated polyphenyl sulfone (SPPSU) as both an anchoring agent and an interlayer modifying agent in the preparation of nano MgO/SPPSU/PPSU membranes for oil removal from water. These asymmetric membranes were prepared using the phase inversion technique. The dispersed nano MgO was observed in the membrane matrix as seen by scanning electron microscope and energy dispersive X‐ray analysis. The reduction in contact angle value establishes the increases in hydrophilicity. An increase in SPPSU (wt %) loosens the nano MgO/SPPSU/PPSU membrane packing as exhibited by the increase of d‐spacing by X‐ray diffraction analysis. The antifouling properties were tested using humic acid, as a model foulant. Further, in castor oil/water emulsion separation, it was found that the membrane with 25 wt % anchored moiety SPPSU/nano MgO produced a greater flux recovery ratio of 94.9% (±0.3) without compromising the oil rejection of 99% (±0.4) and better oleophobic surfaces for oil. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42848.  相似文献   

3.
Porous polyphenylsulfone (PPSU) membranes are facilely prepared via the nonsolvent-induced phase separation method. The typical asymmetric structure of such prepared porous membranes can be controlled by optimizing the sulfonation degree of the sulfonated poly(ether ether ketone) to 84.7% in the casting solution. Scanning electron microscopy images show that the porous membrane comprises a thin dense top skin layer, a sublayer structure with distinct long finger-like pores and the large pores in the substructure. The porous PPSU membrane was then used in vanadium flow battery (VFB). The optimized porous membrane yields an admirable performance, including excellent selectivity, chemical stability, and high columbic efficiency. Furthermore, the low cost of porous PPSU membranes indicates the promise of this technology for use in VFB applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47752.  相似文献   

4.
We prepared mixed‐matrix membranes (MMMs) composed of carboxylated single‐walled carbon nanotubes (f‐SWCNTs) and a sulfonated biphenyl poly(ether sulfone) (S‐PPSU) polymer matrix. The thermal stability and properties of the pores of the S‐PPSU and f‐SWCNTs were characterized by thermogravimetric analysis and sorption isotherm curves, respectively; these showed that the surface and pore diameter decreased after the introduction of carboxyl groups to the single‐walled carbon nanotubes (SWCNTs), and the pore properties did not restore original values even when the f‐SWCNTs were preheated to 350 °C to remove carboxyl groups. The gas‐separation measurement showed that the MMMs comprised of the S‐PPSU and f‐SWCNTs possessed better gas‐separation properties than the ones composed of biphenyl poly(ether sulfone) and SWCNTs. The permeability for N2, O2, He, and CO2 and the selectivity for O2/N2 and O2/CO2 were enhanced simultaneously because of the good dispersion of f‐SWCNTs and the improved interaction between the two phases. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44995.  相似文献   

5.
A novel sulfonated polyphenylsulfone (sPPSU)/polyphenylsulfone (PPSU)‐based dual‐layer hollow fiber membrane with a nanometric thin skin layer has been designed for biofuel dehydration via pervaporation. The thickness of skin selective layer is in the range of 15–90 nm under different spinning conditions measured by positron annihilation spectroscopy (PAS) coupled with a mono‐energetic positron beam. The effects of outer‐layer dope properties, coagulation temperature, and dope flow rate during spinning were systematically investigated. By tuning these spinning parameters, a high performance sPPSU/PPSU‐based dual‐layer hollow fiber membrane with desirable morphology was successfully obtained. Particularly owing to its nanometric thin skin layer, a high flux of 3.47 kg/m2h with a separation factor of 156 was achieved for dehydration of an 85 wt % isopropanol aqueous solution at 50°C. After post thermal treatment at 150°C for 2 h, the separation factor was dramatically improved to 687 while flux dropped to 2.30 kg/m2h, which make it comparable to the inorganic membranes. In addition, excellent correlations were found among the results from field emission scanning electron microscopy, PAS spectra, and separation performance. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2943–2956, 2013  相似文献   

6.
This article describes preparation of temperature‐sensitive poly(vinylidene fluoride) hollow fiber membranes using the dry‐wet spinning technique and investigates effects of air gap length on the structures and performances. In spinning these hollow fibers, N,N‐dimethyl formamide and poly(ethylene glycol) (10,000) were used as the solvent and pore‐forming agent, respectively. The prepared fiber membranes were characterized by scanning electron microscopy, pore size measurement, filtration experiments of pure water flux, and solutes with different molecular weights. The fiber membranes exhibit a quite asymmetric structures consisting of double skin layers situated on the fiber walls, two finger‐like layers near skin layers as well as macrovoids and sponge‐like structures at the center of the fiber cross‐sections. Remarkable changes of pure water flux and retention of solute are observed around 32°C, indicating an excellent temperature‐sensitive permeability. As the air gap length increases, the pore size of fiber membrane decreases, which results in decrease of pure water flux and allows small molecules to permeate through the fiber membrane. POLYM. ENG. SCI., 53:2519–2526, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
To convert highly brittle into flexible membrane, the polystyrene sulfonic acid-co-maleic acid crosslinked sodium alginate (PSSAMA/NaAlg) membrane was modified by incorporating the different weight% of dibutyl phthalate (DBP) as a plasticizer. The effect of DBP content on the physico-chemical properties of the membranes was thoroughly examined. The membranes exhibited lower glass transition temperatures with increasing the plasticizer content in the matrix of PSSAMA/NaAlg. The separation performance of the membranes for water/isopropanol and water/1,4-dioxane was studied at different temperatures. Among the modified membranes, the membrane containing 6 wt% of DBP exhibited the highest separation factors of 24,129 with a flux of 13.57 × 10−2 kg/m2 hr and 23,353 with a flux of 12.99 × 10−2 kg/m2 hr for water/isopropanol and water/1,4-dioxane at 30°C, respectively. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The estimated activation energy values for permeation of water (Epw) and isopropanol (EpIPA) were, respectively, ranged between 12.09 and 8.79, and 42.52 and 32.79 kJ/mol. A negative heat of sorption (ΔHs) values was obtained for all the membranes, suggesting that Langmuir's mode of sorption was predominant. Based on the results, it is concluded that the modified membranes demonstrated excellent pervaporation performance for the separation of water/isopropanol and water/1,4-dioxane.  相似文献   

8.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid as sulfonation agents was carried out to prepare membrane materials with increased hydrophilicity and potentially increased fouling resistance. Sulfonated PPESK (SPPESK) copolymers, with a degree of sulfonation ranging from 10–300%, were prepared and characterized. Factors affecting the sulfonation reaction were studied, and reaction conditions for the preparation of SPPESK with different degrees of sulfonation were determined. Compared with the properties of PPESK, the hydrophilicity of SPPESK was increased, as shown by a reduced contact angle with water. The glass transition temperature was increased from 278°C (PPESK) to a maximum of 323°C for the highly sulfonated derivative, due to the strong polarity of  SO3H and hydrogen bonding. Ultrafiltration membranes prepared with PPESK and SPPESK were compared. For a SPPESK asymmetric membrane, the PEG12000 rejection was 98% and the water flux was 876 kg · m−2 · h−1. SPPESK/PPESK composite nanofiltration membranes were also prepared and were shown to have short‐term operational stability up to 120°C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1685–1692, 2001  相似文献   

9.
A series of blend membranes of poly(phenyl sulfone) (PPSU) with poly(bisphenol A‐co‐4‐nitrophthalic anhydride‐co‐1,3‐phenylenediamine) (PBNPI) were prepared through a solution casting method. This was done to examine the permeation characteristics of oxygen and nitrogen. The effect of the PPSU/PBNPI ratio on the membrane structure and O2/N2 separation performance were investigated. The results show that the permeability increased remarkably with the content of PPSU, whereas the selectivity decreased slightly. To enhance the selectivity of O2/N2, the blend membranes were further crosslinked with a p‐xylylenediamine agent via the immersion method. According to the Fourier transform infrared analysis, the N? H group was formed on the imide group of PBNPI. Therefore, we suggest that during the crosslinking modification, the PBNPI served as a crosslinkable polymer; this resulted in increased crosslinking efficiency with PBNPI content. The high‐resolution X‐ray diffraction and melting point method results show that crosslinking modification improved the selectivity with an acceptable loss in permeability along with increased crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Pore sizes of microporous polymer membranes were determined by the calculation based on the gas permeability of porous media. The gas permeability coefficient K (given by J = K Δp/l, where J is the steady-state gas flux, Δp is the pressure, difference, and l = the thickness of a membrane) for porous membrane can be given generally by where K0 is the Knudsen permeability coefficient, η is the viscosity of the permeant gas, B0 is the geometric factor of a membrane, and Δp? is the mean pressure of the gas on both sides of a membrane. From gas permeability measurements which yield the pressure dependence of gas permeability coefficient (expressed as above equation), the mean pore size of the porous membrane can be estimated as where M is the molecular weight of the permeant gas. The validity of this method was examined with various Millipore filters of which nominal pore sizes are known. It was confirmed that the method provided a simple and reliable means of estimating mean pore size of microporous membranes. The method was applied to investigate the influence of factors involved in preparation of microporous polysulfone membranes by coagulation procedure. It was found that the mean pore size of porous polysulfone membrane increases with (1) increasing with casting thickness, (2) increasing temperature of coagulation bath, and (3) decreasing concentration of polymer in casting solution (DMF as solvent). Water flux and water flux decline due to compaction are also examined as a faction of pore size, porosity, and the thickness of membranes.  相似文献   

11.
Our target in this study was the preparation of electrodialysis ion‐exchange membranes with appropriate properties for applications in water recovery and treatment. Composite mixed‐matrix, anion‐exchange membranes were prepared by a solution casting technique with acrylonitrile–butadiene–styrene as a base binder, resin powder as a functional group agent, activated carbon as an adsorptive filler, and an Ag nanolayer as a surface modifier. The Ag nanolayer was used with a magnetron sputtering method. The effect of the nanolayer deposition rate (Rq) and substrate and annealing temperatures on the physicochemical characteristics of the membranes were studied. The X‐ray diffraction results show that average grain size of the nanolayer and membrane crystallinity were improved with increasing Rq. The atomic force microscopy and scanning electron microscopy results show that the membrane roughness was enhanced with increasing Rq. The height distribution results also show the best height distribution for the modified membrane at low Rq. The selectivity and flux decreased with increasing nanolayer Rq in the membranes. The selectivity was also decreased initially with increases in the substrate and annealing temperatures from 300 to 325 K in the membranes and then showed an increasing trend. An opposite trend was found for flux with variations in the temperature. The modified membrane containing a 20‐nm Ag nanolayer at low Rq showed better performance compared to the other modified membranes and the pristine one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40025.  相似文献   

12.
Polyethersulfone (PES) nanofiltration membranes were prepared using a simple dry‐jet wet spinning technique with different contents of sulfonated poly(ether ether ketone) (SPEEK) ranging from 0 to 4 wt %. The structural parameters (rp and Akx) and electrostatic properties (ξ and X) of the blend membranes were deduced by employing the combination of irreversible thermodynamic model, steric hindrance pore (SHP) model, and Teorell‐Meyer‐Sievers (TMS) model. The modeling results obtained have been analyzed and discussed. The mean pore radius and pore size distribution of the blends were also determined based on the theoretical models. The results showed that pore radius increased with increasing the concentration of SPEEK from 0 to 2 wt % but decreased with a further increase in SPEEK content. The water flux, however, showed a systematically increase with increasing SPEEK content. The SPEEK also showed significant effect on membrane electrical properties. Both effective charge density and ratio of effective charge density to electrolyte solution increased with increasing concentration of SPEEK in the dope solution, reaching a value of ?21.02 and ?2.29, respectively. The pore radius which was determined by using different transport models has also been analyzed and discussed. It is found that the addition of SPEEK into dope solution is one of the paramount parameters in developing the negatively charged nanofiltration membrane with enhanced water flux while retaining the pore radius in the nanometer range. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

13.
The synthesis and characterization of crosslinked aromatic polymer membranes with high ion exchange capacity (IEC) values are reported. Through aromatic nucleophilic substitution polycondensation and the subsequent sulfonation reaction, the highly sulfonated polymers SPPSU‐2S and SPPSU‐4S with high molecular weight (Mn = 138–145 kDa, Mw = 200–279 kDa) and well‐defined structures were synthesized. By solution casting and thermal annealing treatment, flexible crosslinked membranes with high solvent insolubility were obtained. The membranes exhibited mechanical and chemical stability as confirmed by dynamic mechanical analysis (DMA) and conductivity measurement. The crosslinked SPPSU‐4S membrane with IEC = 3.20 meq/g showed the highest proton conductivity of 0.163 S/cm at 120 °C, 90% RH, and improved thermal stability compared with its precursor (uncrosslinked) membrane. The results show that simple annealing method could improve significantly membranes properties of highly sulfonated aromatic polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44218.  相似文献   

14.
A new kind of hollow titania spheres‐chitosan (hTiO2‐CS) hybrid membranes was prepared by a physical blending method. hTiO2 spheres were found to disperse well in the as‐prepared hTiO2‐CS hybrid membranes. Their incorporation can reduce the chitosan crystallinity and enhance slightly its hydrophilicity and thermal stability. Subsequently, hTiO2‐CS/PAN composite membranes comprising of the hTiO2‐CS hybrid membrane as separation layer and a polyacrylonitrile (PAN) membrane as support layer were fabricated. Compared to the CS/PAN membrane, all of them exhibit a much better flux and separation factor for a 90 wt % aqueous solution of isopropanol at 80 °C. This promising kind of composite membranes may find potential application in the dehydration of alcohols.  相似文献   

15.
Isotactic polypropylene (iPP) hydrophobic flat‐sheet membranes were fabricated for use in vacuum membrane distillation (VMD) through a thermally induced phase‐separation process with dispersing hydrophobically modified SiO2 nanoparticles in the casting solution to achieve a higher hydrophobicity and to sustain a stable flux in VMD. The contact angle (CA) measurements indicated that the incorporation of nano‐SiO2 into a casting solution mixture containing 20 wt % iPP had a 20.9% higher CA relative to that of SiO2‐free membranes. The addition of nano‐SiO2 also induced morphological changes in the membrane structure, including changes in the pore size distribution, porosity, and suppression of macrovoids. The pore size distribution of the iPP–SiO2 membranes became narrower compared with that of the SiO2‐free membranes, and the porosity also improved from 35.45 to 59.75% with SiO2 addition. The average pore size and maximum pore size of the iPP–SiO2 membranes both decreased. The ability of the membranes to concentrate an astragalus aqueous solution (a type of traditional Chinese medicine) with VMD was investigated. The surface hydrophobicity and antifouling performance of the iPP–SiO2 membranes improved with nano‐SiO2 addition to the membrane casting solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42615.  相似文献   

16.
Tetraethylorthosilicate crosslinked poly(vinyl alcohol) membrane was modified by varying the amounts of chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The effects of chitosan content and feed composition on the pervaporation performance of the membranes were analyzed. The modified membranes exhibit simultaneous increase of both flux and selectivity. The membrane containing 15 mass % of chitosan shows the highest separation selectivity of 2991, with a flux of 2.39 × 10?2 kg/(m2 h) at 30°C for 10 mass % of water in the feed. The total flux and flux of water are almost overlapping each other, manifesting that the membranes could be used effectively to break the azeotropic point of water–isopropanol mixture, so as to remove water from the isopropanol. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water permeation (Epw) are significantly lower than those of isopropanol permeation (EpIPA), suggesting that the membranes developed here have higher separation ability for water–isopropanol system. In addition, difference was negligibly small between the activation energy values of total permeation (Ep) and water permeation (Epw), indicating that coupled transport is minimal because of a higher selective nature of membranes. The Ep and ED values ranged between 40.92 and 52.60, and 39.58 and 52.47 kJ/mol, respectively. The positive heat of sorption (ΔHs) values observed in all the membranes suggests that Henry's mode of sorption is predominant. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1380–1389, 2006  相似文献   

17.
Composite membranes were prepared from an aqueous solution of poly(vinyl alcohol) (PVA) and silver sulphate. The silver nanoparticles were generated in situ before crosslinking PVA matrix by reduction of silver ions using sodium borohydride. Physico‐chemical properties of the resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy (UV–vis), thermogravimetric analysis (TGA), Wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and universal testing machine (UTM). The UV–vis spectrum shows a single peak at 410 nm due to surface plasmon absorption of silver nanoparticles. This surely specified that silver nanoparticles are generated in PVA matrix. The membranes were under go pervaporation (PV) for separation of water from isopropanol at different temperatures. The results indicated that hydrophilicity and amorphous nature of the membranes were increased with increasing silver nanoparticles in PVA matrix. The swelling and separation performance of the membranes were studied. Both permeation flux and separation factor were increased with increasing silver nanoparticles in PVA matrix. The results showed that the membrane containing 2.5 mass% of Ag salt exhibited excellent PV performance. The values of total flux and flux of water are almost closed to each other, indicating that membranes could be effectively used to break the azeotropic point of water‐isopropanol. The long‐term test was performed at room temperature and ascertained that membranes were durable up to 30 days for the dehydration of IPA. On the basis of the estimate Arrhenius activation energy values, the efficiency of the membranes was discussed. The calculated ΔHs values are negative for all the membranes, indicating that Longmuir's mode of sorption is predominant. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41248.  相似文献   

18.
The aim of this study was to investigate the effect of pore-forming hydrophilic additives on the porous asymmetric polyvinylideneflouride (PVDF) ultrafiltration (UF) membrane morphology and transport properties for refinery produced wastewater treatment. PVDF ultrafiltration membranes were prepared via a phase inversion method by dispersing lithium chloride monohydrate (LiCl·H2O) and titanium dioxide (TiO2) nanoparticles in the spinning dope. The morphological and performance tests were conducted on PVDF ultrafiltration membranes prepared from a different additive content. The top surface and cross-sectional area of the membranes were observed using a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The surface wettability of porous membranes was determined by the measurement of a contact angle. The mean pore size and surface porosity were calculated based on the permeate flux. The results indicated that the PVDF/LiCl/TiO2 membranes with lower TiO2 nanoparticles loading possessed smaller mean pore size, more apertures inside the membrane with enhanced membrane hydrophilicity. LiCl·H2O has been employed particularly to reduce the thermodynamic miscibility of dope which resulted in increasing the rate of liquid–liquid demixing process. The maximum flux and rejection of refinery wastewater using PVDF ultrafiltration membrane achieved were 82.50 L/m2 h and 98.83% respectively at 1.95 wt.% TiO2 concentration.  相似文献   

19.
This study examined the consequences of the addition of polyvinyl pyrrolidone (PVP) of different molecular weights with constant molecular weight of polyacrylic acid (PAA) on the morphology and permeation properties of polysulfone (PSF) membranes. The asymmetric polymeric membranes were prepared by phase inversion process using PSF in N‐methyl‐2‐pyrrolidone (NMP) as a solvent. The surface structure and morphology of the prepared membranes were analyzed by field‐emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). The pore number, average pore size and area of pores for all the membranes were determined by permeability method. These ultrafiltration membranes were subjected to characterizations such as measurement of pure water flux (PWF), compaction factor (CF), bovine serum albumin (BSA) rejection for finding the permeability performance, whereas equilibrium water content, contact angle, porosity, hydraulic resistance, and ion exchange capacity (IEC) are measured for evaluating the hydrophilicity. Results demonstrate that the flux performance of the membranes and morphological parameters own a crucial inter‐relationship with the molecular weight of PVP. The membrane pore area and pore number were found to be increased by increasing molecular weight of PVP with constant molecular weight of PAA. A detailed comparative study was done with Chakrabarty et al. (J. Membr. Sci. 2008, 309, 209) and found better in almost all the aspects. All the resulting parameters were compared and concluded with the fact that addition of small amount of PAA in PSF/PVP/NMP casting solution can be better than addition of PVP alone. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41964.  相似文献   

20.
The effect of the starting polymer on the reaction of sulfonation of polysulfones was investigated. When concentrated sulfuric acid is used as the sulfonation reagent in an organic solvent‐free reaction, a polymer degradation equally occurs, leading to a decrease in the yield of product recovery. Poly(ether sulfone) Cardo appears to be the most resistant to chain scission in the medium and a control of the sulfonation degree can be performed via the reaction condition control. The reaction can be monitored by UV–Visible spectrophotometry. Phase inversion by immersion of a N‐methyl‐2‐pyrrolidone–polymer dope in water led to asymmetric membranes with an average pore size in the range of that of ultrafiltration and that of nanofiltration membranes. The latter membranes can only be obtained at high polymer concentrations and at moderate sulfonation degrees. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2461– 2473, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号