首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review covers publications on magnetite nanoparticles in polymer matrix, especially in humic acids, which are very interesting, widespread natural polymers. Of special attention was the influence of synthetic conditions on the structure and physicochemical properties of magnetic nanomaterials as well as their potential in environmental applications as sorbents. Nanoparticles of Fe3O4 in polymer matrix as promising materials for environmental applications have been in the focus of a great number of studies due to their properties. The modification of magnetic nanoparticles by humic acids leads to increase the sorption properties of such composites and stabilization of magnetite nanoparticles, inhibiting their agglomeration. Thus, humic acids on the one hand, can be used as effective stabilizers for magnetoactive nanoparticles, and on the other hand, keep their protective properties towards ecotoxicants.  相似文献   

2.
This study was performed to evaluate the properties of poly(vinyl alcohol) (PVA), gelatin, and PVA–gelatin dispersions and films enriched with Zataria multiflora essential oil (ZO). The results reveal that the ζ potential, particle size, and viscosity values and the antioxidant and antibacterial activities of the dispersions changed significantly with the addition of ZO to the polymer matrix. Changes in the properties of the dispersions suggested the presence of interactions between PVA or gelatin and ZO. Such interactions could affect the mechanical and water‐barrier properties of the films. ZO induced remarkable decreases in the tensile strength, elastic modulus, and swelling and increases in the elongation at break, solubility, and water‐vapor permeability of the films. Scanning electron microscopy analyses proved the impact of ZO on the film morphology, which affected the film properties, including the mechanical and water‐barrier properties. The addition of ZO to the polymer led to a coarse film microstructure because of the hydrophobic ZO aggregates, which produced discontinuities in the film matrix. ZO considerably increased the antioxidant and antibacterial activities of the dispersions. Pseudomonas aeruginosa was the most resistant bacteria. The improved antioxidant and antimicrobial activities of the PVA–ZO and gelatin–ZO indicated that such products could effectively be used as wound dressings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45351.  相似文献   

3.
The edible fruits of four wild small trees or shrubs (Arbutus unedo, Crataegus monogyna, Prunus spinosa, and Rubus ulmifolius) traditionally consumed in the Iberian Peninsula were studied to evaluate their potential for human nutrition, considering their content in bioactive compounds. Lipophilic phytochemicals, such as fatty acids and tocopherols, as well as some hydrophilic antioxidants, such as vitamin C and organic acids, were analyzed. In addition, the antioxidant activity, measured as lipid peroxidation inhibition (β‐carotene/linoleate and TBARS assays), was evaluated in each fruit. As far as we know, this is the first report relating to bioactive compounds in wild fruits with relation to the lipid peroxidation inhibition. Data revealed that these wild edible fruits are good sources of bioactive compounds as organic acids, vitamin C, tocopherols, and polyunsaturated fatty acids. They could be considered as functional foods or potential sources of bioactive compounds with antioxidant synergism effect, to be included as antioxidant food ingredients or in dietary supplements, mainly Rubus ulmifolius, due to its high content in tocopherols. This study provides useful and relevant information that justify tocopherols influence in the prevention of lipid peroxidation, due to the strong correlation observed (r>0.95) between these lipophilic bioactive compounds and the antioxidant activity.  相似文献   

4.
Some effects of food, habitat and temperature on the lipid composition of a freshwater mollusk,Diplodom patagonicus, were studied. Animals kept and fasted up to 60 days in an aquarium at 9 C and 20 C showed a decrease of the total lipid content that corresponded to a decrease of triacylglycerols and diacylglycerol ethers. This decrease evoked an increase of polar-to-nonpolar lipid ratio. However, no significant change in the total fatty acid composition was shown. Moreover, a decrease of temperature from 20 C to 9 C decreased the incorporation of labeled linoleic and α-linolenic acid into the lipids, but did not modify the unsaturated: saturated acid ratio of the mollusk lipids during this period. A change of habitat from lake to estuary changed very significantly the fatty acid composition of the animal. The ω6 acids, linoleic and arachidonic, typical ofD. patagonicus living in the lake, were partially replaced by ω3 acids. That this change was due to a change of food composition was indicated by the fatty acids of corresponding sediments. Therefore, the fatty acid composition ofD. patagonicus is highly sensitive to food composition and varies little with temperature and seasonal changes. Member of Carrera del Investigador Científico de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Member of Carrera del Investigador Científico del Consejo Nacional de Investigaciones Ciéntíficas y Técnicas, Argentina.  相似文献   

5.
The study compared the effects of swelling and dissolution of a matrix polymer by food simulants on the release of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) from poly(lactic) acid (PLA) and polypropylene (PP) composite films. The total migration was determined gravimetrically in the ethanol and acetic acid food simulants at different time and temperature conditions, while migrants were detected by laser diffraction analysis and transmission electron microscopy. Swelling, thermal analysis, and scanning electron microscopy were applied to characterize the degradation of polymer films at the migration conditions. The release of nanoparticles was found in a high‐temperature migration test of 4 h at 90 °C. The hydrolytic dissolution of the PLA polymer in the food simulants caused a migration of GNPs (>100 nm) from the PLA/GNP/MWCNT films into the simulant solvents, while the entangled MWCNTs formed a network on the film surface, preventing their migration from the PLA composite films. In contrast, the PP polymer slightly swells in ethanol solvents, allowing some short carbon nanotubes to be released from the surface and cut edges of the PP/MWCNT film into food simulants. Mathematical modeling of diffusion was applied that accounts for type of polymer, time–temperature conditions, and solvent concentration; model parameters were validated with experimental results. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45469.  相似文献   

6.
Free phenolic (FP), conjugated phenolic (CP), and insoluble-bound phenolic (IBP) acids were extracted from the seeds of seven species of oil-tea camellia and their antioxidant activities were evaluated. The results indicated that Camellia vietnamensis has the highest total phenolic content (TPC) (31.84 ± 0.11 g of gallic acid equivalent [GAE] kg−1) and that Camellia polyodontia has the lowest TPC (12.34 ± 0.22 g GAE kg−1) in the kernel. The average TPC among the species is similar in both the kernels and in the shells, and the content order of the three forms of phenolic compounds is FP > IBP > CP. HPLC-MS analysis showed the presence of 9–11 phenolic compounds in the FP, CP, or IBP extracts of the seven species of oil-tea camellia seed. Among the phenolics identified, ferulic acid, catechin, and epicatechin were the major contributors of antioxidant activity. Hierarchical cluster analysis conducted based on the phenolic properties showed that C. vietnamensis and Camellia semiserrata belong to the group characterized by high antioxidant capacities (FRAP, ferric-ion-reducing antioxidant power; ABTS assay), and Camellia chekiangoleosa and Camellia oleifera are arranged in a group with moderate phenolic properties. The other species constitute the third cluster with low phenolic content and antioxidant activity. The study demonstrated that oil-tea camellia seed contains significant amounts of phenolic acids. In addition, extracts from various parts of the seed could be interesting novel sources of natural antioxidants.  相似文献   

7.
ABSTRACT

Sargassum muticum is categorized as a brown seaweed species which has been used as a dye fabric colorant in certain regions of Asia. The brown extracts of S. muticum also have antioxidant properties, which could enhance the color and nutrients in food products. However, the color extract is unstable, and also limits the application. This study was performed to encapsulate the color extract with maltodextrin and stabilize the color extract by spray drying technique using combinations of various levels of inlet temperature and feed flow rate. Initially, S. muticum powder was analyzed for moisture content, water activity, solubility, and color properties for optimization purposes. This study showed that the optimum inlet temperature and feed flow rate of the spray drying process to produce good-quality, stable, and acceptable powder properties were at 140°C and 3?rpm, respectively, with 4% of maltodextrin. Then, the powder was analyzed for density, compressibility index, hygroscopicity, particle size, and antioxidant properties. This study represents an interesting food additive to be incorporated in functional food due to the attractive brown colorant and the presence of antioxidants.  相似文献   

8.
Traditionally, additives are introduced into a polymer matrix via extrusion process which consumes a high amount of energy. In this study, the use of different additives including antioxidants for the in‐reactor stabilization of polyethylene has been investigated in order to provide an energy saving system. Particular attention was dedicated to the efficiency of antioxidant influencing the catalysts activity and properties of polymers. The effect of the addition of Irganox 1330 and Irgafos 168 antioxidants and zinc stearate on the activities of metallocene, post‐metallocene, and their supported hybrid were studied. In addition, the effect of different additives on the thermal characteristics of the synthesized polymers and oxidative induction time (OIT) was evaluated. Our polymerization results exhibited that the factors such as chemical structure of antioxidant and its steric hindrance, type of catalysts, and their hybrid could affect the catalyst performance and OIT contents. The use of antioxidants mixture and hybrid of catalysts is a way that can increase oxidation resistance of polymers considerably. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45482.  相似文献   

9.
Electroactive composites consisting of a ferroelectric ceramic in a polymer matrix have gained much interest as compliant electromechanical or pyroelectric sensors. Of the various theoretical models developed to understand the dielectric and electroactive properties of composites, the majority are based on a cube of unit dimensions representing the matrix with fractional inclusions representing the ceramic. Composite properties are dictated by the choice of constituent materials along with the intra- and inter-connectivity of the separate phases. A ceramic powder randomly dispersed in a polymer matrix is referred to as having 0-3 connectivity, i.e. the ceramic phase possesses no intra-connectivity throughout the composite in the x, y, and z directions, whereas the polymer possesses full intraconnectivity in these directions. For thin composite films, where the ceramic grain size is comparable to the film thickness, or for composites with high ceramic volume content, the degree of ceramic connectivity throughout the composite thickness will be enhanced over thick or low ceramic content composites, thus implying an amount of 1-3 connectivity within the composite. In order to investigate the properties of such composites, a cube model has been applied that deals with mixed 0-3 and 1-3 connectivity composites. This paper reports on the experimental and theoretical characterization of two different mixed connectivity composites, one with a polar polymer matrix and another with a nonpolar matrix.  相似文献   

10.
Growth hormone (GH) release is a process that is well regulated by several factors, including GH secretagogues. GH can mediate the regulation of the fatty acid level and composition. The aim of this study was to determine the effect of a synthetic GH secretagogue peptide (A233) on the growth and fatty acid composition in tilapia (Oreochromis niloticus). To address this objective, we administrated a diet supplemented with A233 to juvenile tilapia for 60 days. The group fed with a diet supplemented with 600 μg of A233 per kg of feed increased in weight (4.81 ± 0.09 g) and specific growth rate (2.49 ± 0.03%/day) compared to the control diet group (3.63 ± 0.08 g, 2.07 ± 0.04%/day; respectively) (p < 0.001). In the muscle, the total lipids for the control diet group were higher than that in the group fed with 600 μg of A233 per kg feed; however, no differences were detected in the liver. In both tissues, the patterns of fatty acid composition and content were generally similar, with some exceptions. Tilapia fed with 600 μg of A233 per kg of feed showed, in liver and muscle, a significantly higher composition and content of n‐3 polyunsaturated fatty acids (such as 20:5n‐3, 22:5n‐3, 22:6n‐3) and n‐3/n‐6 PUFA than animals fed with the control diet. To our knowledge, this is the first report on the the effects of natural or synthetic GH secretagogues (GHS) on fatty acid composition, implying an increase in the nutritional quality of the tilapia.  相似文献   

11.
The transport properties of gases in mixed matrix membranes (MMMs) are important in materials design. Here, a novel time‐dependent density functional theory (TDDFT) method to study the transport properties of gases in MMMs is developed. The MMM is modeled by inserting a spherical filler into the continuous polymer phase, which is similar to the Maxwell model; additionally, the inhomogeneity of the filler and the molecular correlations were taken into account in the TDDFT method. Transport properties such as permeation, density profile, flux, and chemical potential are examined and discussed. TDDFT prediction of the permeation is found to be higher than that of the Maxwell model, and the filler‐polymer interface is key to tuning this effect, which also seems to be the dominating factor in the transport process on both the microscopic and macroscopic scale. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4586–4594, 2017  相似文献   

12.
In this work, we prepared a series of poly(vinylidene fluoride) (PVDF)–surface functionalized BiFeO3 (h‐BFO)–Sodium dodecyl sulfate (SDS) composite films by solvent casting method to investigate the effect of SDS in the composites. The X‐ray diffraction confirmed that the structure of h‐BFO significantly changed in the PVDF‐(h‐BFO)‐SDS composite in comparison with the rhombohedral structure of pure BiFeO3. The microscopic study illustrated that the composite with a higher percentage of SDS content facilitated the dispersion as well as proper distribution of ceramic particles in the polymer matrix. The presence of different functionalities of respective polymer and the modified fillers was confirmed by FTIR Spectrophotometer. The dielectric and electrical study done by Impedance Analyzer revealed that the SDS treated surface functionalized composites showed relatively higher dielectric properties than that of two phase composites and pure polymer. Finally, the ferroelectric properties of the composite films done by P‐E loop tracer revealed that the SDS‐treated composites showed an enhanced remanent polarization. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45040.  相似文献   

13.
A series of unsaturated polyester (UPR)‐co‐rare‐earth complex (REX) photoluminescence materials with red and green luminescence were fabricated. REXs with double bonds, including complex of europium (Eu3+) (methacrylic acid)3 and 1,10‐phenanthroline (Phen) [Eu(MAA)3Phen], and complex of terbium (Tb3+)(methacrylic acid)3 and Phen [Tb(MAA)3Phen], and UPR acted as functional monomers and the polymer matrix, respectively. Fourier transform infrared and UV absorption spectroscopy confirmed the chemical structure of the resulting UPR‐co‐REX according to the free‐radical polymerization mechanism. The study of fluorescence distribution by means of laser scanning confocal microscopy indicated that the REX materials were uniformly dispersed in the UPR matrix. The effects of the type and dosage of REX on the fluorescence intensity and stability were examined via fluorescence spectrometry. We found that the optical/physical properties of the REX were improved by UPR molecular skeleton structures. The fluorescence intensity increased with increasing use of the REX and reached a maximum value when the REX content was 12 wt %. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45253.  相似文献   

14.
Functional cationic polymers carrying mannose moieties were synthesized in a facile manner by employing RAFT polymerization. Initially, a protected carbohydrate based monomer, [2‐(2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranosyloxy)ethyl methacrylate (AcManEMA)], was prepared by the O‐glycosylation of 2‐hydroxyethyl methacrylate (HEMA). Subsequently, a macroRAFT agent of poly[2‐(dimethyl)amino ethyl methacrylate] (PDMAEMA) was generated, and a further chain extension polymerization with AcManEMA was carried out in dioxane to form a acetylated mannose cationic diblock copolymer, PDMAEMA‐b‐PAcManEMA. It was attained in high yields and displayed low dispersity (Ð). Acetylated mannose moieties on the polymer were deprotected with sodium methoxide and the amines from the DMAEMA block were protonated to yield a cationic diblock glycopolymer, PDMAEMA‐b‐PManEMA. The cationic property of polymers were characterized by mixing with a negatively charged siRNA duplex and a pDNA, and aggregates of 102 and 233 nm were obtained, respectively. Agarose gel shift assay revealed that the polymers were able to retain the nucleic acids as large polymer complexes. Lectin binding assay proved that the mannose residue on the polymers were only able to bind specifically with ConA. PNA lectin was employed as a control and did not show specific binding. The cationic glycopolymer could be advantageous in targeted nucleic acids delivery in specific cells. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44947.  相似文献   

15.
Phenylpropanoids and phenylpropanoid-derived plant polyphenols find numerous applications in the food and pharmaceutical industries. In recent years, several microbial platform organisms have been engineered towards producing such compounds. However, for the most part, microbial (poly)phenol production is inspired by nature, so naturally occurring compounds have predominantly been produced to date. Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding monolignols. The performed biotransformations showed that this strain is able to catalyze the stepwise reduction of chemically interesting unnatural phenylpropenoic acids such as 3,4,5-trimethoxycinnamic acid, 5-bromoferulic acid, 2-nitroferulic acid, and a “bicyclic” p-coumaric acid derivative, in addition to six naturally occurring phenylpropenoic acids.  相似文献   

16.
A simple method of pore modification complied with defect removal polymer zeolite mixed matrix membrane was developed by in situ carbon (C) deposition. The C deposition was achieved by the controlled decomposition of polymer matrix by heat treatment. In this study, polyetherimide/silicoaluminophosphate‐34 mixed matrix membrane (MMM) was fabricated on clay‐alumina support tube, followed by carbonization of the polymer matrix for gas separation application. MMM without heat treatment were also synthesized for comparison by conventional method. The membranes were characterized by X‐ray diffraction, field emission scanning electron microscopy, and X‐ray photoelectron spectroscopy. Due to carbonization, in situ C nanoparticles were deposited in to the interfacial pores, and filler particles were oriented in preferable direction. The presence of C?O, C? N, and graphitic carbon in the matrix, may be an indication of partial carbonization and restoration of adherence of polymer with substrate. The separation factor for CO2/CH4 achieved 39.15 with a permeance value of 23.01 × 10?8mol/(m2 s Pa) for CO2 at 30 °C and 200 kPa feed pressure. For the first time, this work shows an improvement toward permeability of MMM by simple carbonization of polymer matrix with commendable values as compare to the reported literature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45508.  相似文献   

17.
Although many methods are available for the evaluation of the antioxidant capacity of samples presented in the liquid state, typically food and beverages, to date only the 2,2′‐diphenyl‐1‐picrylhydrazyl (DPPH) assay has been applied to the measurement of the antioxidant capacity of solid samples such as active packaging materials. A modified 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) assay has been successfully developed for the measurement of the antioxidant capacity of conducting polymer powders. The ABTS?+ radical scavenging activity of polypyrrole (PPy), polyaniline (PANI) and poly(3,4‐ethylenedioxythiophene) (PEDOT) powders was compared. The ranking order for greatest antioxidant capacity among the conducing polymer powders was PANI > PPy > PEDOT. The reduced forms of all the three conducting polymer samples were found to show greater radical scavenging activity than their as‐prepared partially oxidized forms. The modified ABTS assay is a simple, rapid and sensitive method for evaluating the antioxidant capacity of conducting polymer powders. The method is also suitable for composite antioxidant materials comprising a conducting polymer and a conventional packaging polymer. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The synthesis of multimetallic layered double hydroxides‐g ‐poly(?‐caprolactone) (LDHs‐g ‐PCL) was explored by in situ ring‐opening polymerization, considering layered clay's improvement on barrier properties in polymer films. LDHs/PCL nanocomposites were prepared by blending LDHs‐g ‐PCL and pure PCL via solution casting method. With incorporation of as low as 0.2 wt % of LDHs, LDHs/PCL nanocomposites exhibited excellent mechanical performance with tensile strength and elongation at break over 45 MPa and 837%, respectively. Compared with pure PCL, the O2 permeability of LDHs/PCL nanocomposites decreased by nearly 78% as LDHs content increased up to 1 wt %. It was revealed that the key parameter to improve the barrier properties is not only the high aspect ratio of layered clays but also the specific interactions that they develop in the polymers matrix. Due to the merits of its biodegradation and physical properties, LDHs/PCL nanocomposites could be potential materials applied in packaging industry widely. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45320.  相似文献   

19.
In this study, mixing petroleum-based low-density polyethylene (LDPE) with biodegradable poly(lactic acid) (PLA) is used as polymer matrix. Boron compounds, metal hydroxides, melamine (MLM), ammonium polyphosphate (APP), and pentaerythritol (PER) were used as reinforcement materials to improve flame resistance of polymer matrix. The composite materials were characterized by Fourier transform infrared spectroscopy, limiting oxygen index (LOI), thermogravimetric analysis, mechanical test, and scanning electron microscopy analyses. The LOI analysis showed that for samples, which included MLM, APP, and PER, the LOI values were dramatically improved. Especially, the LOI value of sample Q (LDPE80/PLA20/APP30/PER15/MLM15/ZB3) was enhanced about 95.17% compared to polymer mixing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48960.  相似文献   

20.
This work reports for the first time the presence of pentacyclic triterpenic acids in Argania spinosa. By solid/liquid extraction with absolute ethanol and GC‐FID analysis, we report that ursolic acid is the major triterpene in the leaf and fruit of argan (0.10–0.44% DW), followed by significant amounts of oleanolic acid (0.05–0.19% DW). Their contents in the leaf were four times higher than in the fruit. Minor levels of betulinic and maslinic acids were also determined in the fruit pulp. Our results suggest that the developmental stage of the plant organ and the environmental conditions modulate the biosynthesis of triterpenic acids in argan. Advanced stages of ontogeny and severe climatic conditions induced a selective production of lupenyl and ursanyl structures. Argan fruits and leaves constitute interesting raw materials for the obtaining of ursolic and oleanolic acids that are strongly demanded by the functional food and pharmaceutical industries. The utilization of dry pulp of argan fruits, a by‐product of the argan oil industry, for the obtaining of new triterpene‐based formulations of high added value would increase the profitability of these crops and might help to guarantee the survival of the A. spinosa forests in the long term. Practical applications: Argan fruits and leaves constitute interesting raw materials for obtaining ursolic and oleanolic acids. Morocco accumulates every year more than 44 500 tons of dry fruit pulp as a by‐product of the argan oil industry. The utilization of this biomass for the obtaining of bioactive compounds of high added value that could be used in the design of new functional food and drugs would help to increase the profitability of the argan crops and represent an intelligent manner of contributing to the A. spinosa survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号