首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of UV irradiation and micro‐ and nano‐TiO2 as well as titanate nanotubes (TiNT) on the phase morphology and thermal properties of the electrospun PCL composite fibers was investigated. Polycaprolactone (PCL)/TiO2 (micro‐ and nano‐TiO2 as well as titanate nanotubes) composite fibers were prepared by electrospinning a polymer solution. The PCL and PCL/TiO2 composite fibers were exposed to UV light at irradiation times of 5 and 10 days. After UV irradiation the crystallinity of the electrospun PCL/TiNTcomposite fibers increased because of the large specific surface area of TiNT. The thermal stability of the PCL/TiNT electrospun composite fibers increased due to the formation of crosslinking structure after UV irradiation. The SEM analysis suggests that after UV radiation the fibers showed high degree of degradation due to the high number of fibers breakages and fibers surface voids. The results of FTIR spectroscopy confirmed that the TiO2 particles enhance the degradation process because of their photocatalytic activity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43539.  相似文献   

2.
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Novel TiO2–Ag core–shell micro‐/nanowires (TiO2 shell coating on Ag core) have been successfully prepared via a solvent–thermal method. Energy dispersive spectroscopy and X‐ray diffraction analyses revealed that the micro‐/nanowires were composed of Ag, Ti and O elements, and Ag was face‐centered cubic whereas TiO2 was mainly amorphous. Interestingly, scanning electron microscopy (SEM) and transmission electron microscopy results showed that most of the TiO2 bristles were perpendicular to and uniformly studded on the surface of the Ag cores. Subsequently, TiO2–Ag/poly(arylene ether nitrile) (PEN) composite films were prepared via a solution‐casting method in order to investigate the effect of TiO2–Ag on the PEN matrix. SEM images showed that there was good interfacial adhesion between fillers and PEN matrix owing to the special bristle‐like structure. Thermal analysis results showed that the TiO2–Ag/PEN composite films possessed excellent thermal properties endowed by the PEN matrix. The dielectric constant of the composite films increased to 9.3 at 100 Hz when the TiO2–Ag loading reached 40 wt%. Rheology measurements revealed that the network formed by TiO2–Ag was sensitive to shear stress and nearly time independent. © 2013 Society of Chemical Industry  相似文献   

4.
Photocatalytic degradation mechanism of the polycarbonate(PC)/TiO2 composite films was studied under the ambient air condition in order to investigate the feasibility of the PC/TiO2 composite as a photodegradable polymer. TiO2 composition in the PC/TiO2 composite was changed from 0 wt% to 4 wt%. Photodegradation behaviors of the composite films were compared with that of the pure PC films by performing the weight loss monitoring under UV irradiation, FTIR spectroscopy, color measurement analysis, SEM, and XPS analysis. The weight loss rate of the PC/TiO2 composite film (33% weight loss after 300 h) with 4 wt% TiO2 was twice as high as the pure PC films (14% weight loss after 300 h). The increase in the FTIR hydroxyl peak, and carbonyl peak intensity and the yellowing observation during the photodegradation were due to the formation of the photoproducts (aliphatic, aromatic chain‐ketones, aromatic, and OH radical) and the structural modification of polycarbonate. XPS analysis of composite film showed the photodegradation of the polymer surface and TiO2 particles exposure on the surface of the composite films matrix. POLYM. COMPOS., 36:1462–1468, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Polystyrene/titanium dioxide (TiO2) composite particles containing organic ultraviolet (UV)‐stabilizer groups were prepared by the emulsion copolymerization of styrene and 2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylpropoxy)benzophenone with sodium sulfopropyl lauryl maleate as a surfactant in the presence of rutile TiO2 modified with 3‐(trimethoxysilyl) propyl methacrylate, and the product was poly[styrene‐co‐sodium sulfopropyl lauryl maleate‐co‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylpropoxy) benzophenone] [poly(St‐co‐M12‐co‐BPMA)]/TiO2 composite particles. The structures of the composite particles were characterized with Fourier transform infrared spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The Fourier transform infrared and UV–vis measurements showed that poly(St‐co‐M12‐co‐BPMA) was grafted from the surface of TiO2, and this copolymer possessed a high absorbance capacity for UV light, which is very important for improving the UV resistance of polystyrene. The thermogravimetric analysis measurements indicated that the percentage of grafting and the grafting efficiency could reach 513.9 and 59.9%, respectively. The differential scanning calorimetry measurement indicated that the glass‐transition temperature of the poly(St‐co‐M12‐co‐BPMA)/TiO2 composite particles was higher than that of poly (St‐co‐M12‐co‐BPMA).These research results are very important for preparing polystyrene with high UV resistance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Photodegradable polypropylene (PP) composites were prepared via melting blending using PP and titanium dioxide (TiO2) immobilized organically modified montmorillonite (organoclay). TiO2 immobilized organoclay (TiO2‐OMT) was synthesized by immobilizing anatase TiO2 nanoparticles on organically modified clay via sol–gel method. The structure and morphology of TiO2‐OMT were characterized by XRD and scanning electron microscope (SEM), which showed that anatase TiO2 nanoparticles with the size range of 8–12 nm were uniformly immobilized on the surface of organoclay layers. Diffuse reflection UV–vis spectra revealed TiO2‐OMT had similar absorbance characters to that of commercial photocatalyst, Degussa P25. The solid‐phase photocatalytic degradation of PP/TiO2‐OMT composites was investigated by FTIR, DSC, GPC and SEM. The results indicated that TiO2‐OMT enhanced the photodegradation rate of PP under UV irradiation. This was due to that immobilization of TiO2 nanoparticles on organoclay effectively avoided the formation of aggregation, and thereby increased the interface between PP and TiO2 nanoparticles. After 300 h irradiation, the average molecular weight was reduced by two orders of magnitude. This work presented a promising method for preparation of environment‐friendly polymer nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

7.
A novel nanoscale GR–Nd/TiO2 composite photocatalyst was synthesized by the hydrothermal method. Its crystal structure, surface morphology, chemical composition and optical properties were studied using XRD, TEM, and XPS, DRS and PL spectroscopy. It was found that graphene and neodymium modification shifts the absorption edge of TiO2 to visible-light region. The results of photoluminescence (PL) emission spectra show that GR–Nd/TiO2 composites possess better charge separation capability than do Nd/TiO2 and pure TiO2. The photocatalytic activity of prepared samples was investigated by degradation of methyl orange (MO) dye under visible light irradiation. The results show that the GR–Nd/TiO2 composite can effectively photodegrade MO, showing an impressive photocatalytic activity enhancement over that of pure TiO2. The enhanced photocatalytic activity of the composite catalyst might be attributed to the large adsorptivity of dyes, extended light absorption range and efficient charge separation due to Nd doping and graphene incorporation.  相似文献   

8.
TiO2/Na-HZSM-5 nano-composite photocatalysts were prepared by dispersing TiO2 onto the external surface of Na+-modified nano-ZSM-5 zeolite using a sol–gel process. Samples were characterized by XRF, XPS, HRTEM, XRD, DRUV–vis, NH3-TPD, FT-IR, and the adsorption and photodegradation of methyl orange (MO) in aqueous solution. Results show the modification of support by Na+ does not affect the loading, dispersion and structure of loaded TiO2, but reduces the acidity of the nano-zeolitic support by preferentially eliminating stronger acid sites. The MO adsorption mainly takes place on the external surface of the supports. The strong and medium strong acid sites of the supports are the adsorption sites. MO molecules adsorbed by strong acid sites are difficult to desorb, whereas the adsorption of MO by medium strong acid sites is reversible. Generally, the MO photodegradation activity of TiO2/Na-HZSM-5 nano-composites is better than that of bare TiO2. However, it changes remarkably with the Na+ content of the supports, giving the maximum value at 1.1 wt.% Na+ when the MO adsorption by the support is almost completely reversible. The enhancement of the photodegradation activity of TiO2/Na-HZSM-5 nano-composites is attributed to the reversible adsorption of MO by the medium strong acid sites on the nano-zeolitic supports.  相似文献   

9.
Polyaniline (PANI)/porous silica MCM‐41 (MCM‐41) composite was synthesized according to surface polymerization theory, and it was confirmed through comparing with PANI/solid silica (SiO2) by TGA and XPS techniques. The morphology and composition of the composite were also characterized by some techniques such as small‐angle XRD, N2‐adsorption isotherm, SEM, FTIR, and UV–vis. The thermal stability for the PANI/MCM‐41 composite was enhanced when compared with that of pure PANI. With the increase in the concentration of HCl, the doping degree increased and UV‐absorption peak at about 700 nm showed a red shift. The conductivity of the composite was enhanced by increasing the concentration of HCl. The results of FTIR showed that there was a strong interaction between PANI and MCM‐41. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2088–2094, 2006  相似文献   

10.
This study provided a facile method to prepare nano‐TiO2/polystyrene hybride microspheres in ethanol solution. The formation of titanium dioxide (TiO2) nanoparticles and hybrid microspheres were verified by FTIR, SEM, transmission electron microscopy, thermogravimetric analysis, and X‐ray powder diffraction. Monodispersed colloid TiO2 nanoparticles with small particle sizes were obtained, and the average particle size could be effectively controlled from about 10 nm. The antibacterial activity of the organic microspheres and hybride microspheres was also investigated against Escherichia coli. They were able to efficiently inhibit the growth and the multiplication of E. coli under the UV. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
TiO2 thin films were fabricated through hydrothermal method. Silver nanoparticles were loaded on TiO2 thin films via photoreduction technique. Subsequently, the graphene quantum dots (GQDs) were spin‐coated on the Ag/TiO2 nanocomposites thin films. The crystal structure, surface morphology and UV‐vis absorbance were tested by XRD, SEM and ultraviolet‐visible spectrophotometer. These results indicated that Ag nanoparticles and GQDs are anchored on the TiO2 nanorods. Absorbance of Ag/TiO2 and GQDs/Ag/TiO2 nanocomposite thin films have been extended into the visible region. Visible‐light response of the samples were investigated by electrochemical workstation. The photoresponse of the sample can be enhanced by sensitization of the Ag nanoparticles and GQDs. The enhanced visible‐light response may be due to the surface plasmon resonance of silver nanoparticles and visible absorbance of GQDs. The highest photocatalytic activity has been observed in the 9‐GQDs/Ag/TiO2 composite thin film. The efficient charge separation and transportation can be achieved by introducing the Ag nanoparticles and GQDs in the TiO2 thin film.  相似文献   

12.
Novel composite film was synthesized by TiO2 doping into phosphomolybdic acid (PMoA)/polyvinylpyrrolidone (PVP) system. The influence of TiO2 doping on its microstructure and photochromic properties was investigated via atomic force microscopy, transmission electron microscope, Fourier transform infrared spectroscopy (FT‐IR), ultraviolet–visible spectra, and X‐ray photoelectron spectroscopy (XPS). After TiO2 doping, the surface of TiO2/PMoA/PVP composite film changed to rough from smooth, and the particle size significantly increased. The FT‐IR results verified that the basic structure of PMoA and PVP were not destroyed in the composite films. The non‐bonded interaction between the acid and polymer was strengthened by TiO2 doping. Irradiated with UV light, composite films changed from colorless to blue. The TiO2/PMoA/PVP composite film exhibited a strong photochromic effect and faster bleaching reaction than that of PMoA/PVP film. XPS results indicated that the amount of PMoA in photo‐reductive reaction was increased after TiO2 doping, which resulted in the photochromic efficiencies enhanced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41583.  相似文献   

13.
TiO2 porous ceramic/Ag–AgCl composite was prepared by incorporating AgCl nanoparticles within the bulk of TiO2 porous ceramic followed by reducing Ag+ in the AgCl particles to Ag0 species under visible light irradiation. The porous TiO2 ceramic was physically robust and chemically durable, and the porous structure facilitated the implantation of AgCl NPs. Compared with the bare TiO2 ceramic, TiO2 porous ceramic/Ag–AgCl composite exhibited higher photocatalytic performance for the degradation of MO and RhB under visible light irradiation. The reaction rate constants k of MO and RhB degradation over TiO2 porous ceramic/Ag–AgCl composite was respectively 6.25 times and 3.62 times higher than those recorded over the bare TiO2 porous ceramic. The photocatalytic activity showed virtually no decline after four times cyclic experiments under visible light irradiation. Scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectra and X-ray photoelectron spectroscopy were used to characterize the TiO2 porous ceramic/Ag–AgCl composite.  相似文献   

14.
1H,1H,2H,2H‐Perfluorooctyl trichlorosilane (PFTS) was used to modify TiO2 nanoparticles, and hydrophobic PFTS–TiO2 nanoparticles were obtained by an ultrasonic reaction method. The PFTS–TiO2 surface morphological and hydrophobic properties were analyzed with scanning electron microscopy (SEM), Fourier transform infrared spectrometry, and contact angle (CA) testing. Then, the poly(p‐phenylene benzobisoxazole) fabric–phenolic composite filled with PFTS–TiO2 as a lubricant additive was fabricated by a dip‐coating process. The tribological properties of the composite were investigated, and the wear surface morphology was observed by SEM. The experimental results show that the water CA of the composite filled with PFTS–TiO2 was 158°, and the composite containing 4 wt % PFTS–TiO2 exhibited excellent antifriction and abrasion resistance. The hydrophobic surface of the composite showed excellent durable performance with a static water CA of 126.7° after abrasion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45077.  相似文献   

15.
Polyaniline nanocomposite films were chemically synthesized in the presence of alginate template by varying the concentration of TiO2 in the composites. Characterization of the composite samples by FTIR, UV‐Vis spectra (UV), and X‐ray diffraction (XRD) indicates the formation of polyaniline‐alginate/titanium dioxide (PAT) composites. The morphology analysis by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) also supports the formation of the composites. Temperature‐dependent DC conductivity of the polyaniline‐alginate (PA) and PAT composites was studied in the range of 300 ≤ T ≤ 500 K. UV‐Vis and FTIR spectral studies reveal that the alginate is a good template for the chemical interaction between polyaniline and TiO2, which suggests that the micelles formed by the anilinium‐alginate cations containing TiO2 are responsible for the transport properties of the PAT composites. POLYM. COMPOS., 31:1754–1761, 2010. © 2010 Society of Plastics Engineers.  相似文献   

16.
The adsorption–desorption characteristics of Acid Red G (ARG) on the polypyrrole‐modified TiO2 (PPy/TiO2) composite as a novel adsorbent was investigated. PPy/TiO2 was synthesized via the in‐situ polymerization of pyrrole monomer in the prepared TiO2 sol solution. Results from X‐ray diffraction and Fourier transform infrared spectra indicated the formation of the PPy/TiO2 composite. The adsorption experiments showed that the modification of PPy substantially improved the adsorption and regeneration abilities of PPy/TiO2. The adsorption equilibrium was achieved in a short time of 20 min, and the adsorption kinetics followed the pseudo‐second‐order model. The Langmuir adsorption isotherm was found for PPy/TiO2, with the maximum adsorption capacity of 179.21 mg/g. The regeneration experiments showed that PPy/TiO2 could be successfully regenerated by simple alkali‐acid treatment. The adsorption efficiency of the regenerated PPy/TiO2 adsorbent for ARG was still greater than 90% after regeneration for 10 times. Additionally, the adsorption efficiency of PPy/TiO2 for the ARG effluent was still higher than 78% after adsorption–desorption for four times. It is expected that the PPy/TiO2 composite can be considered as a stable adsorbent for the removal of dye. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A new photocatalyst, named TiO2 microspheres, prepared by a sol‐spraying‐calcination method, can freely suspend with air bubbling in its aqueous suspension and easily settle down from a water phase under gravity. The experimental results demonstrated that TiO2 microspheres had better adsorption capacity than conventional TiO2 powders, due to large surface area, large pore volume, and also a porous structure. The photocatalytic activity of TiO2 microspheres in aqueous suspension was evaluated using salicylic acid (SA) as a model substrate. It was found that the Langmuir–Hinshelwood model in its integral form described the kinetics of SA photocatalytic degradation in the TiO2 microsphere suspensions better than its simplified form as a first‐order reaction model, since the significant substrate adsorption on the catalysts was not negligible. The kinetics of SA photocatalytic degradation with different initial concentrations and pH was further investigated. The experiments demonstrated that the change of pH could significantly affect the adsorption of SA in the TiO2 microsphere suspensions. The effects of substrate adsorption rate and photoreaction rate on the overall performance of photocatalytic degradation is also discussed on the basis of experimental data. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
TiO2 supported on spherical activated carbon (TiO2/SAC) was prepared through an ion-exchange method followed by a heat-treatment process. The adsorption characteristic of TiO2/SAC was evaluated using azo dye methyl orange (MO) as a target substance, and the photocatalytic degradation of MO under UV irradiation was also discussed. A synergistic effect of both the adsorption capacity of activated carbon and the photoactivity of TiO2 on the removal of MO from aqueous solution was observed. Experimental results revealed that the photocatalytic degradation of MO improved with increasing photocatalyst dosage and followed a pseudo-first order kinetic. After five-cycle runs, TiO2/SAC still exhibited relatively high photocatalytic characteristic for the degradation of MO. Besides, the prepared TiO2/SAC can be helpful in the easy separation of photocatalyst from solution after photocatalysis of MO. Furthermore, the use of liquid chromatography/mass spectrometry (LC/MS) technique, identified three intermediates as degradation products during the photocatalytic reaction of MO with TiO2/SAC.  相似文献   

19.
Photocatalytic degradation of cationic blue X-GRL (CBX), a strongly adsorbing substrate on TiO2/SiO2, has been investigated by diffuse reflection UV–VIS spectra (UV–visible/DRS) and FT-IR methods. The heterogeneous photocatalysis processes include: adsorption of dye, surface reaction and desorption of final products. The adsorption of CBX onto the surface of TiO2/SiO2 was characterized, and the effect of initial pH of solution on the adsorption was determined. The results demonstrated that CBX was strongly adsorbed at the TiO site of the catalyst by a penta-heterocyclic-N group. The adsorbed CBX was monitored directly by the UV–VIS/DRS technique during the photodegradation. The results confirmed that the surface photodegradation reaction of CBX was predominantly procedure with the mechanism of direct charge transfer from the semiconductor to the dye adsorbed at TiO center, and its reaction followed the pseudo-first-order kinetics. This mechanism resulted in the formation of more aliphatic amines and/or amide byproducts, which were further transformed to NH4+.  相似文献   

20.
《Ceramics International》2022,48(14):20033-20040
Generally, superhydrophilic self-cleaning coatings are prepared from semiconductors with photocatalytic properties. Organic pollutants attached to the coating surface can be degraded by its photocatalytic performance realizing a self-cleaning goal. Herein, SiO2–TiO2 composite particles were fabricated by the hydrolysis and precipitation of TiOSO4, and SiO2 microspheres were chosen as carriers, which are inexpensive and environmentally friendly. Then, superhydrophilic self-cleaning SiO2–TiO2 coatings were fabricated by spraying the composites on the surfaces of substrates. The morphology, structure and self-cleaning performance of the SiO2–TiO2 coating were characterized and tested. The results revealed that nano-TiO2 was loaded on the surfaces of SiO2 microspheres uniformly forming a hierarchical micro/nanostructure. The SiO2–TiO2 composite particles exhibited excellent photocatalytic degradation performance, and the degradation rate of methyl orange (10 ppm) was more than 98% under UV irradiation for 40 min. Furthermore, the coating prepared with the SiO2–TiO2 composite particles exhibited superhydrophilicity. A water droplet spreads completely on the coating surface in 0.35 s, and the contact angle reaches 0°. In addition, rhodamine B (RhB) and methylene blue (MB) on the coating surface can be degraded efficiently under sunlight irradiation. The SiO2–TiO2 composite particles can be sprayed directly on the surfaces of concrete, brick, wood, and glass slides. Therefore, the particles showed good adaptability to different substrates. The superhydrophilic property was due to the hydrophilicity of SiO2 and TiO2, the hierarchical micro/nanostructure of the SiO2–TiO2 composites, and the photoinduced superhydrophilicity of TiO2. The above experimental results show that the as-prepared superhydrophilic self-cleaning SiO2–TiO2 coating has a large application potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号