首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(phenylene oxide) (PPO) is an electronically insulating, solid polymer film which can be prepared via electropolymerization of phenol on electronically conductive surfaces. The self-limiting nature of this reaction allows the formation of pinhole-free films with nanometer thickness on high aspect ratio micro- and nano-structured substrates. In this work, we investigated the electrodeposition of PPO on carbon nanosheets (CNS). The highly corrugated CNS morphology makes a perfect model substrate to study the conformal electrodeposition of PPO films for advanced energy storage devices based on three-dimensional large-area surfaces. Uniform PPO films of about 8 nm were successfully coated over CNS layers with area enhancements of over 200×. The films uniformly covered the CNS petals and were electronically insulating as confirmed from cyclic voltammetry tests in redox electrolyte solutions. These thin conformal PPO films are of interest for blockage of electronic leakage in supercapacitor applications or even as ion conducting buffer layers in lithium ion batteries.  相似文献   

2.
Thin films, in the range of tens of micrometers thickness, have been prepared by casting onto glass plates the chloroform or N‐methylpyrrolidone solutions of polyimides or poly(imide‐amide)s containing silicon and phenylquinoxaline units in the main chain. The polymers have been synthesized by solution polycondensation reaction of aromatic diamines having preformed phenylquinoxaline rings with bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride or with a diacid chloride resulting from the reaction of this dianhydride with p‐aminobenzoic acid. The polymers were easily soluble in polar aprotic solvents and showed high thermal stability. The free‐standing films exhibited good mechanical properties with tensile strengths in the range of 48–86 MPa, tensile modulus in the range of 1.25–2.22 GPa and elongation at break in the range of 3–37%. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz were in the range of 2.94–3.08 for polyimides and 3.89–4.49 for poly(imide‐amide)s. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3062–3068, 2006  相似文献   

3.
Perfluorocyclobutyl (PFCB) polymers are a new class of materials that show promise as selective layer materials in the development of composite membranes for gas separations, such as carbon dioxide/methane (αpure gas = 38.6) and oxygen/nitrogen (αpure gas = 4.8) separations. In many of the flat sheet applications, a thin film of the selective layer that is free of major defects must be coated onto a support membrane. A focus of this study was to elucidate the impacts of solvents, polymer concentration, and dip‐coating withdrawal speed on PFCB thin film thickness and uniformity. An extension was proposed to the Landau–Levich model to estimate the polymer film thickness. The results show that the extended model fits the thickness‐withdrawal speed data well above about 55 mm/min, but, at lower withdrawal speeds, the data deviated from the model. This deviation could be explained by the phenomenon of polymer surface excess. Static surface excesses of polymer solutions were estimated by applying the Gibbs adsorption equation using measured surface tension data. Prepared films were characterized by ellipsometry. Refractive index was found to increase with decreasing film thickness below about 50 nm, indicating densification of ultrathin films prepared from PFCB solutions below the overlap concentration. Atomic force microscopy was used to characterize surface morphologies. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Conjugated polymers have been the subject of many studies because of their widespread applications in electronic and optoelectronic devices. Poly(p‐phenylene vinylene) is a leading semiconducting polymer in optical applications. This work is focused on the development of thin films of poly(p‐phenylene vinylene) by spin coating and their characterization with Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy to understand their changes. An empirical model has been developed to show the effect of the variables—the spin speed, polymer concentration, and spin time—on the film thickness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Poly(styrene‐co‐acrylonitrile)‐graft‐poly(propylene oxide) (PSAN‐graft‐PPO), the stabilizer formed in situ in the dispersion polymerization of styrene, acrylonitrile and macromonomer PPO maleate in PPO polyol, was separated from ungrafted copolymer PSAN by liquid chromatography. After the determination of the separation conditions by thin‐layer chromatography, the effective separation of the graft polymer from copolymer PSAN was achieved by liquid column chromatography. The graft efficiency and the composition of the graft polymer was determined by UV and 1H NMR, and the formation characteristics of the graft polymer are discussed. © 2001 Society of Chemical Industry  相似文献   

6.
Aiming for X‐ray astronomy applications, we prepared large‐area submicrometer polyimide (PI) films [diameter (Φ) = 8 cm] with great thickness uniformity via the spin‐coating technique by using a PI precursor, poly(amic acid) (PAA) derived from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, and p‐phenylenediamine as the starting materials. The effects of the spinning speed, apparent viscosity of the PAA solution (η), and spinning time on the PI film thickness and its uniformity, as characterized by the measurement of the film thickness every 0.5 cm along the diameter direction, were investigated. By optimizing the spin‐coating conditions, we prepared final submicrometer PI films with average thicknesses in the range of 200–850 nm and with film thickness fluctuations of less than 1.3%. The pressure bulge test results indicate that at a thickness of 805 nm and an inside test aperture diameter of 2.64 cm, the prepared PI films reached a final burst pressure of 20.2 KPa; this suggested excellent mechanical performances in the self‐standing submicrometer PI film. This study makes a contribution by providing a typical example and opening the way for the preparation of robust self‐standing submicrometer PI films with great thickness uniformities for X‐ray astronomy applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39977.  相似文献   

7.
Layer‐by‐layer (LBL) assembly, a simple but versatile method for thin film fabrication, has been widely employed to fabricate nanoengineered films with controlled composition and thickness. Dynamically bonded LBL films are films fabricated using dynamic bonds, that is, chemical bonds which can undergo reversible breaking and reformation usually under equilibrium conditions, as driving forces. Because of the reversible, dynamic nature of the dynamic bonds, these films exhibit various dynamic properties, ranging from a small scale movement of the polymer chains within the films (chain rearrangement), to a large scale movement of the chains, which results in film disintegration. Usually an external stimulus is used to trigger the response of a dynamic film. Novel applications have been proposed by exploiting the dynamic properties of these films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40918.  相似文献   

8.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
This work explores the factors that control the dispersion of exfoliated montmorillonite (MMT) in poly(vinyl alcohol) (PVOH) during solution blending and solvent evaporation. Nanocomposite films were prepared by solution blending of aqueous PVOH solutions with dilute suspensions of fully exfoliated MMT platelets (as confirmed by AFM). Dynamic light scattering (DLS) indicates that addition of MMT suspensions to PVOH solutions results in undesired particle aggregation and thus poor MMT dispersion in cast films (as evidenced by transmission electron microscopic images and gas permeation measurements). We believe that PVOH bridging induces MMT platelet aggregation. To counteract bridging aggregation, we explore the novel idea of pretreating the MMT surface with a small amount of compatible polymer prior to solution blending with PVOH. We hypothesize that “pretreating” the MMT platelet surfaces with adsorbed polymer in dilute suspensions will protect the platelets from bridging aggregation during solution blending and solvent evaporation. MMT/PVOH composite films have been prepared using low‐molecular‐weight PVOH as the pretreatment polymer; and low‐, medium‐, and high‐molecular‐weight PVOH as the matrix polymer. A PEO‐PPO‐PEO triblock copolymer (F108 from the Pluronics® family) was also evaluated as the pretreatment polymer. DLS shows that pretreated MMT platelets are less susceptible to aggregation during blending with PVOH solutions. Results compare the crystalline structure, thermal properties, dynamic mechanical properties, gas permeability, and dissolution behavior of MMT/PVOH films incorporating untreated versus pretreated MMT. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41867.  相似文献   

10.
Transparent conductive oxide (SnO2)/organic layers/aluminum thin film sandwich structures were obtained by vacuum evaporation. The organic component was either a thin carbazole film or a bilayer. In that case, the carbazole film was deposited onto a thin insulating polymer film. The polymer used was the poly(tetrabromo‐p‐phenyleneselenide) (PBrPDSe). Photoluminescence measurements have shown that the carbazole thin films emit blue light. (I‐V) measurements have shown that the structures exhibit diode characteristics. The forward direction is obtained when the transparent conductive oxide (TCO) is positively biased. However, the reproducibility of the results obtained with a single carbazole layer is poor. It appears that the stability of the sample is improved when a thin PBrPDSe film (40 nm) is introduced between the carbazole and the SnO2. The polymer film avoids the short circuit effect. In that case, the turn‐on voltage of the diode is about 3 V, when the thickness of the carbazole film is around 250 nm and the electroluminescence appears at a voltage of about 5 V. It is shown that the thermionic effect cannot be used to explain the I‐V characteristics, which are interpreted with the help of the Fowler–Nordheim tunnel effect. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2042–2055, 2001  相似文献   

11.
J Yuan  C Mao  J Zhou  J Shen  SC Lin  W Zhu  JL Fang 《Polymer International》2003,52(12):1869-1875
Poly(ether urethane)s (PEUs) are widely used as blood‐contact biomaterials because of their good biocompatibility and mechanical properties. Nevertheless, their blood compatibility is still not adequate for more demanding applications. Surface modification is an effective way to improve blood compatibility and retain bulk properties of biomaterials. The purpose of the present study was to design and synthesis a novel non‐thrombogenic biomaterial by modifying the surface of PEU with zwitterionic monomer. In this study, sulfobetaine was grafted onto PEU surface through the following reaction steps: (1) Poly(propylene oxide) (PPO) was reacted at both chain ends with hexamethylene diisocyanate (HDI), and OCN–PPO–NCO was obtained; (2) OCN–PPO–NCO was reacted at one chain end with N,N‐dimethylethanolamine (DMEA) and OCN–PPO–N(CH3)2 was formed; (3) the sulfobetaine was prepared by a ring‐opening reaction between OCN–PPO–N(CH3)2 and 1,3‐propanesultone (PSu); (4) the sulfobetaine was grafted onto PEU surface by the reaction between NCO and the N–H bonds of PEU. The surface composition of films and the hydrophilicity on the PEU surface were investigated by X‐ray photoelectron spectroscopy analysis and contact angle measurements, respectively. The blood compatibility of PEU was evaluated by platelet‐rich plasma contact experiments and the results were observed by scanning electron microscopy. The state of platelet adhesion and shape variation for the attached platelets was described. The modified surface showed excellent blood compatibility, featured by low platelet adhesion. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
A series of aromatic copolyethers containing 1,3,4‐oxadiazole rings and fluorene groups was prepared by nucleophilic substitution polymerization technique of 9,9‐bis(4‐hydroxyphenyl)fluorene, 1 , or of different amounts of 1 and an aromatic bisphenol, such as 4,4′‐isopropylidenediphenol or phenolphthalein, with 2,5‐bis(p‐fluorophenyl)‐1,3,4‐oxadiazole. The polymers were easily soluble in polar solvents like N‐methylpyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and chloroform and can be cast from solutions into thin flexible films. They showed high thermal stability, with decomposition temperature being above 425°C. The polymers exhibited a glass‐transition temperature in the range of 195–295°C, with a reasonable interval between glass‐transition and decomposition temperature. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz and 20°C were in the range of 3.16–3.25. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Poly(chloro‐p‐xylylene) (PPXC) films with a thickness range encompassing more than three orders of magnitude (from 102 nm to 102 μm) were prepared on Si substrates by the chemical vapor deposition method under the same conditions. The effect of the film thickness (d) on the morphology, crystal structure, and crystal orientation behavior of the PPXC films was studied. The average roughness of the root mean square (rms) of the films increased with increasing d according to a power law (rms ≈ dβ, where β is an exponent that depends on the film growth process over time and β = 0.240±0.005, as probed by atomic force microscopy), and the monomer diffusion and relaxation of polymer were suggested as the primary factors governing this morphological evolution. The X‐ray diffraction results indicate that both the crystallinity and crystal size of PPXC increased with increasing d due to the surface confinement effect between the film and the substrate, which retarded the crystallization process. The X‐ray pole figures suggested that the (020) fiber textures with the b axis parallel to the Si substrate normal existed in the PPXC films; these fiber textures, mainly composed of edge‐on crystal lamellae, were thermodynamically favored. The Herman's orientation factor of the fiber textures increased gradually as d grew; this indicated that stronger (020) fiber textures with higher concentrations of edge‐on lamellae existed in the thicker PPXC films. This thickness dependence of the crystal orientation behavior was interpreted to be caused by the strong adhesion between the polymer chains and the substrate. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41394.  相似文献   

14.
3,4‐Di‐(2′‐hydroxyethoxy)‐4′‐nitrostilbene (2) was prepared by the reaction of 2‐iodoethanol with 3,4‐dihydroxy‐4′‐nitrostilbene. Diol 2 was condensed with 2,4‐toluenediisocyanate, 3,3′‐dimethoxy‐4,4′‐biphenylenediisocyanate and 1,6‐hexamethylenediisocyanate to yield novel Y‐type polyurethanes 3–5 containing dioxynitrostilbene as a non‐linear optical (NLO)‐chromophore. Polymers 3–5 were soluble in common organic solvents, such as acetone and DMF. These polymers showed thermal stability up to 280 °C in TGA thermograms with Tg values in the range of 100–143 °C in DSC thermograms. The approximate lengths of aligned NLO‐chromophores of the polymers estimated from AFM images were around 2 nm. The SHG coefficients (d33) of poled polymer films were around 4.5 × 10?8 esu. Poled polymer films had improved temporal and long‐term thermal stability owing to the hydrogen bonding of urethane linkage and the main‐chain character of the polymer structure, which are acceptable for NLO device applications. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Multiple‐wavelength interferometry (MWI), a new optical method for the thermal probing of thin polymer films, is introduced and explored. MWI is compared with two standard optical methods, single‐wavelength interferometry and spectroscopic ellipsometry, with regard to the detection of the glass transition temperature (Tg) of thin supported polymer films. Poly(methyl methacrylate) films are deposited by spin coating on Si and SiO2 substrates. MWI is also applied to the study of the effect of film thickness (25–600 nm) and polymer molecular weight (1.5 × 104 to 106) on Tg, the effect of film thickness on the coefficients of thermal expansion both below and above Tg, and the effect of deep UV exposure time on the thermal properties (glass transition and degradation temperatures) of the films. This further exploration of the MWI method provides substantial insights about intricate issues pertinent to the thermal behavior of thin polymer films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4764–4774, 2006  相似文献   

16.
Porous interior structured polyimide (PI) films with a hierarchical surface are fabricated from 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride and 4,4′‐oxydianiline by a water vapor induced phase separation process under a humid environment. Superhydrophobic properties with a water contact angle of 161° are obtained using the hierarchical surface morphology, which can be adjusted from flower‐like to wrinkle‐shape particles facilely by changing the relative humidity. The dielectric constant (k) of the PI film decreases sharply from 2.8 (film prepared under dry conditions) to ≈1.9 (film prepared under humid conditions) because of the interior porous structure and fluorine‐containing framework. Both a low‐k and superhydrophobicity are very important parameters for PI films in microelectronic and insulating applications.  相似文献   

17.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Sophorolipids (SL; microbial glycolipids) were used as additives in solvent‐cast short‐chain polyhydroxyalkanoate (sc‐PHA) films to enhance surface roughness and porosity. Poly‐3‐hydroxybutyrate (PHB), poly‐(6%)‐3‐hydroxybutyrate‐co‐(94%)‐3‐hydroxyvalerate (PHB/V), and poly‐(90%)‐3‐hydroxybutyrate‐co‐(10%)‐3‐hydroxyhexanoate (PHB/HHx) films were evaluated with up to 43 wt % of SL. Sophorolipid addition caused surface dimples with maximum diameters of 131.8 µm (PHB), 25.2 µm (PHB/V), and 102.8 µm (PHB/HHx). A rise in the size and number of pores in the polymer matrix also occurred in PHB and PHB/V films. Surface roughness and film porosity were visualized by scanning electron microscopy and quantitated using confocal microscopy by correlating the surface area (A′) to the scanned area (A) of the films. The phenotypic alterations of the films caused a gradual decline in tensile strength and modulus and increased the elongation to break. Reductions in the enthalpies of fusion (ΔHf) in both the PHB (41% reduction) and PHB/HHx (36% reduction) films implied diminished crystallinity as SL concentrations increased. Over the same SL concentrations the Tan δ maxima shifted from 4 to 30°C and from 2 to 20°C in these respective films. These results provide a novel means by which sc‐PHA properties can be controlled for new/improved applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40609.  相似文献   

19.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Contact electrification experiments have been performed for the purpose of studying the effect of varying film thickness on charge transfer during metal-insulator contact. Thin films of plasma polymerized methane are deposited on silicon substrates using a magnetically enhanced glow discharge system. Film uniformity across the wafer is verified by ellipsometric techniques. Variations in film thickness from approximately 100 to 600 Å result in a variable amount of charge transfer when the films come in contact with a metal probe. Charging of the polymer film increases with increasing film thickness up to a limiting thickness of approximately 375–400 Å. Similar results are obtained when various substrate treatments are performed previous to film deposition and charge measurements are obtained as a function of film thickness. Contact electrification measurements show the metal-insulator contact is influenced by the insulator/substrate interface up to the same limiting film thickness (375–400 Å). The instrumentation used in this series of experiments is based on measurement of the currents associated with the contact and subsequent separation of the surface state systems of a metal and an insulating polymer. This technique relies on measurement of currents in the picoampere range and appears to be a novel method to experimentally determine charge penetration depth. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号