首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the heat‐shrinkage property in polymer was induced by first compounding low‐density polyethylene/poly(ethylene vinyl acetate) (LDPE/EVA) blends with various amounts of peroxide in a twin‐screw extruder at about 130°C. The resulting granules were molded to shape and chemically crosslinked by compression molding. A process of heating–stretching–cooling was then performed on the samples while on a tensile machine. Shrinkability and effective parameters were also investigated using thermal mechanical analysis. The results showed that the gel fraction was higher for the sample of higher EVA content with the same amount of dicumyl peroxide (DCP). A decrease in the melting point and heat of fusion (ΔHf), as determined from DSC, was observed with an increase in the DCP content. Studies on the heat shrinkability of the samples showed that samples stretched above the melting point had a higher shrinkage temperature than those stretched around the crystal transition temperature. The results showed that by increasing the peroxide content, the shrinkage temperature was decreased. These could be attributed to the formation of new spherulites as well as changes in the amount and the size of crystals. Furthermore, in samples elongated at 120°C (above the melting point), the rate of stretching had no effect on the shrinkage temperature. The results showed that the extent of strain had no effect on the temperature of shrinkage, but rather on the ultimate shrinkage value. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1389–1395, 2004  相似文献   

2.
A new method to obtain hydroxylated poly(vinyl chloride) (PVC‐OH) and its crosslinking in the melt are studied. Starting from a vinyl chloride‐co‐vinyl acetate copolymer, a transesterification reaction in the presence of an alcohol during the processing of plasticized polymer is investigated as a function of the processing temperature and alcohol nature (1‐butanol or 1‐octanol). Reaction evolution is followed by 1H‐NMR and IR spectroscopies. The best results are obtained for 1‐octanol, and they show the absence of secondary reactions and the progressive appearance of OH groups in the polymer as acetate groups disappear. On the other hand, crosslinking of the thus‐obtained PVC‐OH with hexamethylene diisocyanate (HMDI) during the processing is also studied. The gel content and the mechanical properties at 140°C are studied as a function of three crosslinking variables: number of OH groups present in the polymer, concentration of HMDI added to the polymer, and time of crosslinking. The results show that by optimizing those parameters it is possible to obtain gel contents up to 100% and an increase of 600% in the Young's modulus and 1300% in the ultimate tensile strength with respect to the plasticized PVC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 621–630, 1999  相似文献   

3.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

4.
Ethylene‐vinyl acetate rubber (EVM) vulcanizates cured by dicumyl peroxide (DCP) with excellent mechanical properties were obtained by adding superfluous magnesium hydroxides (MH)/methacrylic acid (MAA). Different factors such as the DCP content and MH content were investigated to reveal their effects on the properties of the MH/MAA‐filled EVM vulcanizates. The formulation of DCP of 2 phr, MH of 60 phr, and MAA of 5 phr is recommended for the EVM vulcanizates with excellent mechanical properties. The stress relaxation and stress softening behavior of MH/MAA‐filled EVM vulcanizates were studied. The stress relaxation and stress softening became faster and more obvious with increasing MH content. The hot air aging resistance of EVM vulcanizates filled with different fillers such as silica and high abrasion furnace were compared, and the MH/MAA‐filled EVM vulcanizates had the best aging resistance at 40‐phr filler content. The MH/MAA‐filled EVM vulcanizates had excellent flame retardancy due to the high MH content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Pyrolyzed oil shale (POS) obtained from the pyrolysis of bituminous rock was used as filler in poly(ethylene‐co‐vinyl acetate) (EVA). The effects of the VA content of EVA and the particle size of POS on the mechanical properties were investigated. The composites were prepared in a rotor mixer at 180°C with a concentration of POS of up to 30 wt %. The stress–strain plots of the compression‐molded composites are similar to the EVA (18% VA content) behavior for low concentrations (1–5 wt %) of POS with a particle size lower than 270 mesh. It was observed that decreasing the POS particle size and increasing the VA content of EVA produced better compatibility between the polymer and filler. The mechanical properties, differential scanning calorimetry, and dynamic mechanical analysis also demonstrated the compatibility between EVA and POS under the increase of the VA content in the EVA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1544–1555, 2002; DOI 10.1002/app.10494  相似文献   

6.
Nanocomposites of ethylene‐vinyl acetate copolymer (EVAL) with Dellite organoclay were prepared in a laboratory extruder. The extent of intercalation of the nanocomposites was studied by field emission scanning electron microscopy and X‐ray diffraction. It was established that the organoclay is well dispersed and preferentially embedded in the EVAL phase. Further, the intercalation degree of the organoclay decreased with increasing organoclay content. The mechanical properties of the nanocomposites were studied as a function of clay loading and EVAL type. The nanocomposites exhibited enhanced thermal stability as seen in thermogravimetric studies. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Polymer blend technology has been widely used for the past several years for the modification or enhancement of mechanical properties of polymers to obtain an overall balance of properties over those of the constituents. Despite its interesting mechanical and thermal properties, the impact strength of polypropylene leaves wide scope for improvement. A series of blends of ethylene vinyl acetate (EVA) copolymer with an impact grade of isotactic polypropylene (i‐PP) were prepared by single screw extrusion at 0–0.32 volume fraction of the dispersed phase. The mechanical properties such as tensile behavior, elongation‐at‐break, and impact strength of these blends systems as well as crystallinity were evaluated. Crystallinity data have been used in greater depth to support the mechanical properties. Differential scanning calorimetry studies conducted to study the modification in crystallinity of the crystalline component, i‐PP, of the blend revealed that the rubber component of the blend enhanced the crystallinity of i‐PP phase by providing sites for nucleation. Tensile modulus and strength decreased while the impact strength and breaking elongation enhanced with blending elastomer concentration. The improved properties of these PP/EVA blends are encouraging for carrying out further work on this system (composites) and suggest potential high impact strength applications for PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers (EVA) hollow fibers was studied by the tests such as determination of gel content, density, tensile, FTIR, SEM, and DMA. These effects were discussed based on dose and irradiation environment. The results of gel content depicted that irradiated EVA in ambient conditions had tendency to chain scission while the crosslinking overcame in irradiated samples under nitrogen. Density insignificantly enhanced with irradiation dose. In tensile test, irradiation induced increase in tensile strength and decrease in elongation at break (especially in samples irradiated in nitrogen). Also, changing in layer orientation could be observed by SEM images. In addition, irradiation caused altering peak intensity in FTIR spectrum. DMA results demonstrated that irradiation broaden the elastic zone. Totally, irradiation enhances features especially in irradiated EVA18 in nitrogen. Since, according to stabilization of induced deformation and improvement of mechanical properties (that created by radiation), the irradiated samples can be used in different applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Ethylene vinyl acetate (EVA, 18 mol % vinyl acetate) and epoxidized natural rubber (ENR, 50 mol % epoxidation) were blended in an internal mixer and compared to EVA. Dicumyl peroxide (DCP) was used as a curing agent. The blends consisted of 10–50 wt % of ENR and were compared with crosslinked EVA in terms of heat shrinkage, mechanical properties, and degree of crystallinity. It is found that the blends showed a decrease in mechanical properties with increasing ENR content because DCP was not a good vulcanizing agent of ENR. The addition of ENR did not affect heat shrinkability of EVA. The maximum heat shrinkage obtained was 80% for EVA and the blends. ENR did not affect thermal properties of EVA investigated by the differential scanning calorimetry. The X‐ray diffractometry showed discrepancy in degree of crystallinity before and after specimen stretching and after heat shrinking. It is believed that ENR particles decreased molecular orientation of EVA resulting in a decrease in degree of crystallinity but the remained orientation was sufficient for heat shrinking. The blend showed better extrudability than EVA after increasing take‐up speed. Therefore, the extruded tube prepared from the blend provided higher heat shrinkage than EVA tube. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Distinctive features of free‐radical grafting of trans‐ethylene‐1,2‐dicarboxylic acid (TEDA) onto macromolecules of molten ethylene‐vinyl acetate copolymer (EVA) in the course of reactive extrusion have been investigated along with structure, mechanical characteristics, and high‐elastic properties of molten functionalized products (EVA‐g‐TEDA). It is shown that EVA‐g‐TEDA yield depends on both the peroxide initiator concentration and content of vinyl acetate units in the copolymer molecular structure. At functionalization, acid grafting is accompanied by secondary reactions of macromolecular degradation and crosslinking. With a low‐peroxide initiator concentration (0.1 wt %), degradation prevails; with a higher (0.3 wt %) concentration, crosslinking of macromolecules prevails. It is reported that monomers being grafted attach mostly over secondary carbon atoms in the polymer chain. EVA‐g‐TEDA appears to have a less perfect crystal structure with a lower‐melting temperature and crystallinity as against the starting polymer. The functionalized products display enhanced rigidity and lower deformability in comparison with the initial copolymer. Variations in the swelling ratio and melt strength of EVA‐g‐TEDA depend on the course of competing secondary processes of macromolecular degradation and crosslinking. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Ethylene‐vinyl acetate (EVA) nanocomposites with enhanced flame retardance were prepared by the sol–gel process in the melt. Two EVAs with different vinyl acetate (VA) contents and aluminium isopropoxide were used as organic and inorganic phases. The nanocomposites were prepared in a batch mixer under constant processing conditions and were analysed by several characterization techniques. Aluminium isopropoxide presented low activation energy, which allows the synthesis of the nanoparticles without a post step treatment. The reaction mechanism is proposed. Nanocomposites with smaller and well dispersed metal nanoparticles were produced with an EVA with higher VA content. EVA nanocomposites achieve the requirements for 94 V‐0 classification. © 2013 Society of Chemical Industry  相似文献   

12.
Poly(vinyl acetate) PVAc, in nanolatices with 10% polymer content, prepared by microemulsion polymerization was crosslinked by gamma and UV radiation. PVAc colloidal nanoparticles (average diameter, Dp = 58 nm) had Mw = 562,000 g/mol and about 95% conversions. PVAc nanolatices irradiated by gamma rays (1–13 kGy) at room temperature without crosslinking agent and by UV light (30–300 s exposure times) in the presence of divinylbenzene and allyl methacrylate showed crosslinking of up to 96% (high gel content), Dp < 100 nm and did not degrade as shown by FTIR spectroscopy. DSC and TGA characterization of irradiated PVAc samples indicated that Tg temperatures increased from 28°C for PVAc to 42°C and 39°C for UV and gamma rays crosslinked PVAc, respectively, whereas 10% weight losses occurred at 261°C for uncrosslinked PVAc and at 320 and 313°C for UV and gamma rays crosslinked PVAc. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

14.
A technique has been examined for reducing the extent of crosslinking resulting from 1,1‐di(t‐butylperoxy)‐3,3,5‐trimethylcyclohexane (L‐231) initiating melt grafting of vinyltriethoxysilane (VTEOS) onto poly(ethylene‐co‐vinyl acetate) (EVA). Using measurements of crosslink density and VTEOS conversion, a standard of selectivity for the EVA/VTEOS/L‐231 system at 145 °C was defined and used to assess the influence of a range of additives (0.25 mol per mole VTEOS). The data indicated that compounds such as 4‐nonene, N,N‐dimethylaniline, and cumene improve reaction selectivity, whereas dodecane and cyclohexyl acetate have no effect. A strong correlation between the minimum C? H bond dissociation energy and the influence of a given compound is evident, suggesting that a labile C? H bond is the key element of an effective additive. A mechanism of additive function on the basis of hydrogen atom donation is proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2397–2402, 2002  相似文献   

15.
Heat shrinkability, which is a collective property of polymers, is being utilized in various applications, mainly in the field of encapsulation. Elastic memory is introduced into the system in the form of an elastomeric phase. Here the blends of ethylene vinyl acetate and chlorosulfonated rubber were studied with reference to their shrinkability. It was found that an increase in the elastomer content increased the shrinkage and an increase in cure time also increased the shrinkage. It was seen that high temperature (H‐T) stretched samples showed higher shrinkage than the low (room) temperature (R‐T) stretched one. Generally, the crystallinity of the H‐T stretched sample was higher than that of the low temperature stretched sample, which was again higher than that of the original unstretched sample; but for the low elastomer content blend the crystallinity of the R‐T stretched sample was found to be greater than the corresponding H‐T stretched one. The H‐T differential scanning calorimetry showed that an increase in the CSM content caused the stability toward oxygen to increase. The first decomposition temperatures were found to be higher and the second decomposition temperatures appeared to be lower for the H‐T shrunk sample than the corresponding unstretched sample. The rate of degradation appeared to be enhanced initially, then after 50% decomposition the rate started going down compared to the usual unstretched sample. From SEM it was seen that the H‐T stretched sample was more elongated than the R‐T stretched one. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 707–715, 2000  相似文献   

16.
Y.T. Sung  H.S. Lee  H.G. Yoon 《Polymer》2005,46(25):11844-11848
Effects of crosslinking and crystallinity on the properties of the thermal and rheological properties of the EVA were studied. From the studies of storage modulus of the EVA with VA content in the solid temperature range (about −70 to 50 °C), the storage modulus decreased with increasing the VA content. This result suggested that the crystallinity of the EVA affected the storage modulus of the EVA because of the weak crosslinking of the EVA by DCP. From the studies of complex viscosity of the EVA with and without DCP in the melt state, the values of the power law parameter of the EVA without DCP ranged from 0.39 to 0.50 and the EVA with DCP ranged from 0.03 to 0.12. In the measurement of the complex viscosity of the EVA in the melt state, the crosslinking affected the complex viscosity of the EVA with DCP.  相似文献   

17.
Dispersion behavior of monmorillonite (MMT) is investigated in ethylene vinyl acetate (EVA)/MMT nanocomposite with various vinyl acetate content. Maleic anhydride (MAH) grafted polyethylenes with various MAH contents are used as a compatibilizer to enhance the dispersion of MMT. DMA and XRD studies indicate that an intercalated/exfoliated structure is obtained and vinyl acetate content and the concentration of PEMA play a critical role in EVA/MMT nanocomposite. Higher vinyl acetate content and concentration of grafted maleic anhydride result in better dispersion of MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1057–1061, 2004  相似文献   

18.
19.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

20.
This article focuses on unique compounding and processing conditions at a temperature slightly below the melting temperature of the dispersed phase and well above the melting peak temperature of the matrix. Compounding and processing were carried out at the same temperature. Fibrillar morphologies were obtained by blending ethylene vinyl acetate (EVA) copolymer with nylon 6 (N6) and compounding and processing them slightly below the N6 melting temperature. A hot, soft-solid particle drawing mechanism that operates in such processing conditions caused fibrillation of the N6 particles and formation of highly oriented fibril-filled composites throughout the entire volume. Morphological observations were made in the core region. Enhancement of some mechanical properties and interesting morphological structures were found in some of the blends. The melt elasticity, which was measured by the die swell of the filaments, was maximum at a temperature slightly below the N6 melting temperature, which supported the concept of fibrillation by processing it slightly below the melting temperature of the dispersed phase. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 661–671, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号