首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although shear and pressure fields always coexist in practical polymer processing, their combined influence on the crystallization behavior of polylactide stereocomplex (SC) is ambiguous due to the limit of experiment device. In that case, a homemade device was employed to prepare samples under the coexistence of shear and pressure and explore the crystallization behavior of SC. Differential scanning calorimetry and synchrotron radiation were used to investigate the combined effect of shear flow and pressure on SC crystallization. The results show that shear flow was helpful for SC formation. Shear flow promoted the phase mixing of the polymer blends and improved the nucleation efficiency of SC. Pressure had a negative effect on SC formation because of the decrease in free volume. Regard to polylactide homogeneous (HC), pressure played a positive role on HC formation. Pressure suppressed the formation of SC network which could impede HC generation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46378.  相似文献   

2.
The focus of this research is the study of the microstructures and miscibility at the interface between semi‐crystalline and amorphous PLAs [poly (l ‐lactic acid)(PLLA) with poly (l ,d ‐lactic acid)(PDLLA), respectively]. The blends are prepared through thermal processing (extrusion and hot‐pressing). To increase the area of interface between PDLLA and PLLA, the fibers from PLLA and PDLLA are used. Thermal and microstructures of the blends were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), dynamic thermogravimetric analysis(DMA), small‐angle X‐ray diffraction(SAXS) and wide‐angle X‐ray diffraction (WAXD). The two PLAs are miscible in molten state. However, phase separation is detected after various thermal treatments, with PDLLA being excluded from the regions of interlamellar PLLA regions when PDLLA content is low, as determined from X‐ray diffraction studies. The compatibility between the two PLAs is not perfect in the molten state, since enthalpies of the various blends at Tg are lower than any pure PLA material. The semi‐crystalline PLLA fiber can recrystallize alone in the molten amorphous PDLLA, and a higher nuclei density is observed at the interface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41205.  相似文献   

3.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

4.
Technical renewable poly(l ‐lactide) (PLA)‐based blends represent an elegant way to achieve attractive properties for engineering applications. Recently, the miscibility between PLA and poly(methyl methacrylate) (PMMA) gave rise to new formulations with enhanced thermo‐mechanical properties but their high brittleness still remains a challenge to be overcome. This work here focuses on rubber‐toughened PLA/PMMA formulations for injection‐molding processes upon the addition of a commercially available ethylene‐acrylate impact modifier (BS). The miscibility between PLA and PMMA is not altered by the presence of BS but the incorporation of BS (17% by weight) into a PLA/PMMA matrix could enhance both ductility and toughness of PLA/PMMA blends for PMMA content up to 50 wt %. An optimum range of particle sizes (dn ~0.5 µm) of the dispersed domains for high impact toughness is identified. These bio‐based ternary blends appear as promising alternatives to petro‐sourced blends such as ABS‐based blends in engineering injection‐molding parts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43402.  相似文献   

5.
Degradable polymers were prepared by blending and graft polymerization of cellulose and poly(L‐lactide) (PLLA). The cellulose/poly(L‐lactide) blends and cellulose‐graft‐poly(L‐lactide) polymers were characterized by FTIR, NMR, DSC, and TGA. Wide‐angle X‐ray powder diffraction (WAXD) and degradation tests [by alkaline, phosphate‐buffered saline solution (PBS), and enzyme solution] showed changes in the crystalline structure as a result of degradation. The results indicated that blending and graft polymerization could affect crystallization of the polymers and promote the degradability. The polymers with low degree of crystallinity showed higher degradability. In contrast, enzyme, alkaline, and PBS degradated material decreased rate of polymers degradation. In addition, high levels of PLLA resulted in a decrease in degradation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2257–2264, 2013  相似文献   

6.
The packaging industry is searching for alternative materials to attain environmental sustainability. Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a semicrystalline polymer that meets this sustainability goal since it is bioderived and biodegradable. However, its brittle nature and relatively high water permeation and transmission rates make it unsuitable for packaging applications. In addition, PHBV has poor mechanical, thermal, and rheological properties above 160 °C, limiting its use in cast sheets and thermo‐formed packaging applications. To improve these properties, new blends of PHBV with high molecular weight natural rubber at 5, 10, 15, and 25% by weight were fabricated, and physico‐chemical properties of the blends were characterized. The rubber in the blends aided in the following: increased thermal stability since the complex viscosities of the blends were improved by one log over pure PHBV at 170 °C, created more uniform melting peaks attesting to improved homogeneity, decreased water permeation to a level similar to that of traditional thermoplastics; increased the elongation at break, and stabilized the Young's modulus. Therefore, these blends can potentially be used in‐place of traditional, petroleum‐based thermoplastics in cast sheets and thermoforms. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43937.  相似文献   

7.
This study is focused on the development and analysis of the thermal and structural behavior of nanocrystalline cellulose (NCC)‐based bionanocomposites (BCs). Nanocrystalline cellulose was prepared by controlled acid hydrolysis of oil palm empty fruit bunch fibers. The resulting NCC was surface modified using TEMPO‐mediated oxidation and solvent exchange methods for surface functionalization and also to improve dispersion of fillers. Solvent exchange NCC reinforced polymer blend containing poly(lactic acid)/poly‐(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) was prepared by using solution casting technique at various NCC loading percentages. The addition of NCC resulted in the improvement of structural, thermal, and mechanical properties of BCs as compared to that of the polymer blend. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44328.  相似文献   

8.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was blended with poly(lactic acid) (PLA) with various reactive processing agents to decrease its brittleness and enhance its processability. Three diisocyanates, namely, hexamethylene diisocyanate, poly(hexamethylene diisocyanate), and 1,4‐phenylene diisocyanate, were used as compatibilizing agents. The morphology, thermomechanical properties, and rheological behavior were investigated with scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile testing, dynamomechanical thermal analysis in torsion mode (dynamic mechanical analysis), and oscillatory rheometry with a parallel‐plate setup. The presence of the diisocyanates resulted in an enhanced polymer blend compatibility; this led to an improvement in the overall mechanical performance but did not affect the thermal stability of the system. A slight reduction in the PHBV crystallinity was observed with the incorporation of the diisocyanates. The addition of diisocyanates to the PHBV–PLA blend resulted in a notable increase in the final complex viscosity at low frequencies when compared with the same system without compatibilizers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44806.  相似文献   

9.
We report the synthesis of a linear bio‐based polyurethane (bio‐PU) containing furan ring by using renewable polylactide copolymer diol and 2,5‐furandimethanol as a soft segment and chain extender, respectively, in which the reversible crosslinked covalent bonds between hard segments were incorporated via Diels–Alder (D‐A) reaction between the furan ring of the chain extender and bismaleimide (BM) crosslinker. By simply controlling the amount of BM, mechanical properties of the obtained crosslinked bio‐PUs (CBPUs) were varied widely. In particular, the CBPU100 sample shows the highest tensile strength of 10.8 MPa, Young's modulus of 193 MPa, and an elongation of 155%. The differential scanning calorimetry experiments verify the recycle property of the CBPUs by the D‐A/retro‐D‐A reaction at the proper temperature. The thermal recyclability and remolding ability of these materials are demonstrated by two kinds of polymer processing methods, i.e., solution casting and hot‐compression molding. The recycled CBPUs display almost identical elongation and slightly decreased tensile strength compared to the as‐synthesized samples. Furthermore, the CBPUs also exhibit excellent self‐healing ability. Therefore, the resulting CBPUs possess tunable mechanical properties, good thermal recyclability, re‐mending, and self‐healing ability, which makes the bio‐based materials more eco‐friendly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46272.  相似文献   

10.
In this work, poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) nanocomposites containing functionalized graphene sheets (FGS) were prepared by means of high‐energy ball milling. The crystalline structure, oxygen barrier, mechanical and electrical properties, and biodegradability of the developed nanocomposites were analyzed and correlated with the amount of FGS incorporated and with their morphology, which was reported in a previous study. Addition of FGS into the PHBV matrix did not affect the crystal morphology of the material but led to somewhat enhanced crystallinity. The good dispersion and distribution of the nanofiller within the polymeric matrix, revealed in the first part of this study, was thought to be crucial for the mechanical reinforcing effect of FGS and also resulted in enhanced gas barrier properties at high relative humidity. Additionally, the conducting behavior of the nanocomposites, as interpreted by the percolation theory, displayed a very low percolation threshold set at ~0.3 vol % of FGS, while the materials exhibited an overall significantly enhanced conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42217.  相似文献   

11.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

12.
In this article, biodegradable polymer/clay nanocomposites were prepared. The matrices used were based on blends of Polycaprolactone (PCL) and Anhydride‐Functional Polycaprolactone (PCL‐gMA) with Thermoplastic Starch (TPS). Nanocomposites films based on PCL/TPS and PCL/PCL‐g‐MA/TPS blends reinforced with 1 and 3 wt % of natural montmorillonite and two organo‐modified ones were prepared by melt intercalation followed by compression molding. The study was designed focusing on packaging applications. Grafting maleic anhydride onto PCL was efficient to improve PCL/TPS compatibility but did not modify matrix/nanoclay interaction. Matrix compatibilization and nanoclays increased the Youn?s modulus and slightly decreased the maximum stress of the TPS/PCL matrix. Nanoclay functionalization improved nanoclay dispersion in the blends but it was not reflected in mechanical properties improvements. The water adsorption of the compatibilized matrix was reduced after clay incorporation. A slight decrease in the biodegradation rate was observed with the addition of nanoclay. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44163.  相似文献   

13.
A small amount of acrylonitrile‐butadiene‐styrene (ABS) core shell copolymer particles are used to improve the toughness of poly(l ‐lactide) (PLLA) matrix. The incorporation of ABS copolymer dramatically increased the elongation yield at break of PLLA. For PLLA blend with 6.0 wt % ABS copolymer particles, the elongation yield at break increased by 28 times and the notched impact strength improved by 100% comparing with those of neat PLLA. Fourier transformed infrared (FTIR) and dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) measurement results indicated that the special polarity interaction between ester group of PLLA matrix and nitrile group of PSAN shell phase enhanced the interfacial adhesion between PB rubber phase and PLLA matrix and promoted the fine dispersion of ABS particles in PLLA matrix. Meanwhile, ABS core shell particles also showed a certain extent of effects on the crystallinity behavior of PLLA. A small amount of ABS particles became the nucleating sites, and then the degree of crystallinity of PLLA/ABS blends increased. However, the notched impact of PLLA blends decreased because of the aggregation of more ABS particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42554.  相似文献   

14.
Environmental and economic reasons make the use of bioplastics and biocomposites increasingly coveted in sectors other than packaging. Recycling of all wasted or rejected durable plastics is highly desired and biobased plastics are no exception. Therefore, the investigation of pre‐ and post‐consumer recycling of products made from biobased plastics is of great interest. Polylactic acid (PLA) and its blends have been chosen for this study because it is an excellent representative of mass‐produced bioplastics for industrial applications. As part of the “Sustainable Recycling of ‘Green’ Plastics” project, the current study addresses the durability issues related to the reprocessing and post‐consumer recycling of a PLA virgin resin and two commercially available blends of PLA namely one with polycarbonate (PC) and one with polyethylene (PE). The materials were investigated using methods that simulate post‐processing and post‐consumer recycling. Accelerated ageing was performed at elevated temperature and humidity to simulate the usage period of the materials. The materials were analyzed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and their mechanical strength was evaluated by tensile and impact testing. The flow properties of the materials were characterized by the melt flow index (MFI). Multiple processing of pure PLA did not affect the impact strength or the glass transition temperature (Tg), but caused crystallization and increase in the MFI, indicating that degradation occurred during processing. DSC thermograms of the blends revealed that the components in the blends were not miscible. Multiple processing of the blends did not significantly affect the elastic modulus of the materials, but affected the elongation at break. The results indicated that multiple processing of the PLA/HDPE blend caused increased dispersion and thus increased elongation at break, while the dominating mechanism in the PLA/PC blend was degradation that caused a decrease in elongation at break. Post‐consumer recycling of the PLA/PC blend was simulated and the results clearly showed that ageing corresponding to one year of use caused a significant degradation of PLA. Pure PLA was severely degraded after only one ageing cycle. Although the PLA/PC blend showed some improved mechanical properties and resistance to degradation compared with pure PLA, one ageing cycle still caused a severe degradation of the PLA and even the PC was degraded as indicated by the formation of small amounts of bisphenol A. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43916.  相似文献   

15.
New bio‐based diblock copolymers were synthesized from poly(lactic acid) (PLA) and natural rubber (NR). NR polymer chains were modified to obtain hydroxyl telechelic natural rubber oligomers (HTNR). Condensation polymerization between PLA and HTNR was performed at 110°C during 24 or 48 h. The molecular weight of PLA and HTNR and the molar ratio PLA : HTNR were varied. The new ester linkage in the diblock copolymers was determined by 1H‐NMR. The molecular weight of the diblock copolymers determined from SEC agreed with that expected from calculation. The thermal behavior and degradation temperature were determined by DSC and TGA, respectively. The diblock copolymers were used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. PLA blended with the diblock copolymer showed higher impact strength, which was comparable to the one of a PLA/NR blend. The former blend showed smaller dispersed particles as showed by SEM images, indicating the increase in miscibility in the blend due to the PLA block. The compatibilization was effective in the blends containing ~10 wt % of rubber. At a higher rubber content (>10 wt %), coalescence of the NR and diblock copolymer was responsible of the larger rubber diameter in the blends, which causes a decrease of the impact strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41426.  相似文献   

16.
One of the most significant limitations to widespread industrial implementation of emerging bioplastics such as poly(lactic acid) and poly(hydroxyalkanoate) (PHA) is that they do not match the flexibility and impact resistance of petroleum‐based plastics like poly(propylene) or high‐density poly(ethylene). The basic goal of this research is to identify alternative, affordable, sustainable, biodegradable materials that can replace petroleum‐based polymers in a wide range of industrial applications, with an emphasis on providing a solution for increasing the flexibility of PHA to a level that makes it a superior material for bioplastic nursery‐crop containers. A series of bio‐based PHA/poly(amide) (PA) blends with different concentrations were mechanically melt processed using a twin‐screw extruder and evaluated for physical characteristics. The effects of blending on viscoelastic properties were investigated using small‐amplitude oscillatory shear flow experiments to model the physical character as a function of blend composition and angular frequency. The mechanical, thermal, and morphological properties of the blends were investigated using dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and tensile tests. The complex viscosity of the blends increased significantly with increasing concentration of PHA and reached a maximum value for 80 wt % PHA blend. In addition, the tensile strength of the blends increased markedly as the content of PHA increased. For blends containing PA at >50 wt %, samples failed only after a very large elongation (up to 465%) without significant decrease in tensile strength. The particle size significantly increased and the blends became more brittle with increasing concentration of PHA. In addition, the concentration of the PA had a substantial effect on the glass relaxation temperature of the resulting blends. Our results demonstrate that the thermomechanical and rheological properties of PHA/PA blends can be tailored for specific applications, and that blends of PHA/PA can fulfill the mechanical properties required for flexible, impact‐resistant bio‐based nursery‐crop containers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42209.  相似文献   

17.
Stereocomplex formation between poly(l ‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) in the melt state was investigated and altered via the addition of multi‐branched poly(d ‐lactide) (PDLA) additives. Two different multi‐branched PDLA additives, a 3‐arm and 4‐arm star‐shaped polymeric structure, were synthesized as potential heat resistance modifiers and incorporated into PLLA at 5, 10, and 20 (w/w) through melt blending. Mechanical and thermomechanical properties of these blends were compared with linear poly(l ‐lactide) (PLLA) as well as with blends formed by the addition of two linear PDLA analogs that had similar molecular weights to their branched counterparts. Blends with linear PDLA additives exhibited two distinct melting peaks at 170–180°C and 200–250°C which implied that two distinct crystalline domains were present, that of the homopolymer and that of the stereocomplex, the more stable crystalline structure formed by the co‐crystallization of both d ‐ and l ‐lactide enantiomers. In contrast, blends of PLLA with multi‐branched PDLA formed a single broad melting peak indicative of mainly formation of the stereocomplex, behavior which was confirmed by X‐ray diffraction (XRD) analysis. The heat deflection temperature determined by thermal mechanical analysis was improved for all blends compared to neat PLLA, with increases of up to180°C for 20% addition of the 3‐arm PLLA additive. Rheological properties of the blends, as characterized by complex viscosity (η*), remained stable over a wide temperature range. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42858.  相似文献   

18.
Several bio‐renewable thermosetting polymers were successfully prepared from tung oil through cationic polymerization for the use as the healing agent in self‐healing microencapsulated applications. The tung oil triglyceride was blended with its methyl ester, which was produced by saponification followed by esterification. The changes in storage modulus, loss modulus, and glass transition temperature as functions of the methyl ester content were measured using dynamic mechanical analysis. In addition, the fraction of cross‐linked material in the polymer was calculated by Soxhlet extraction, while proton nuclear magnetic resonance, Fourier transform infrared spectroscopy and TEM were used to investigate the structure of the copolymer networks. The thermal stability of the thermosets as a function of their methyl ester blend contents was determined by thermogravimetric analysis. Finally, the adhesive properties of the thermosets were studied using compressive lap shear and the fracture surfaces were analyzed using SEM. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40406.  相似文献   

19.
Poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were prepared via a melt‐blending process with or without the addition of a 3‐aminopropyl triethoxysilane (APTES) compatibilizer at different dosages. The addition of the compatibilizer showed improved compatibility between TPU and PLA; this led to an enhanced dispersion of TPU within the PLA matrix. With the addition of 1‐phr APTES, the crystallization behavior did not vary much, but this exacerbated the formation of a second melting temperature for PLA at higher temperature. However, the addition of 5‐phr APTES into the PLA/TPU blends depressed the crystallization temperature and resulted in a melting temperature depression phenomena with the disappearance of the second melting peak because of the lubricated effect of low‐molecular‐weight species of APTES. The addition of a low dosage of APTES improved the impact strength further from 29.2 ± 1.4 to 40.7 ± 2.7 J/m but with a limited improvement in the tensile properties; this indicated that a higher dispersion of the dispersed phase did not always improve all of the mechanical properties because of the low‐molecular‐weight nature of the compatibilizer used. The physical properties of the added modifier needed to be considered as well. A low dosage of APTES (1 phr) also increased the viscosity because of the improved interaction between TPU and PLA at all of the investigated shear rate regions, but a higher dosage of compatibilizer induced another plasticizing effect to reduce the viscosity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42322.  相似文献   

20.
The objective of this article is to investigate the controlled release characteristics of 6‐mercaptopurine (6‐MP) loaded microspheres prepared from the blends of poly(3‐hydroxybutyrate) (PHB) and Pluronic F68/127 by the oil‐in‐water emulsion‐solvent evaporation technique. Formulations were prepared by taking different ratios of individual polymer components to achieve a maximum 79% encapsulation and extending the release time up to 24 h. Differential scanning calorimetry (DSC) suggested reduction in crystallanity of PHB after blending with Pluronic F127. The absence of chemical interactions between 6‐MP and the blend matrix was confirmed by Fourier transform infrared (FTIR) spectroscopy, while the size of microspheres measured by optical microscopy ranged between 30 and 47 μm. X‐ray diffraction (XRD) confirmed the crystalline nature of 6‐MP even after encapsulation and surface morphology of the microspheres was investigated by scanning electron microscopy (SEM). In vitro release of 6‐MP at 37°C in pH 7.4 phosphate buffer media indicated a dependence on the composition of Pluronic in the blend. The release data have been fitted to empirical equations to understand the release profile of 6‐MP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40196.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号