首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium solid polymer electrolytes (SPE) composed of polyethylene oxide (PEO) and yttrium oxide (Y2O3) nanoparticles were prepared. The influence of the Y2O3 nanoparticles on the non‐isothermal crystallization behaviors, crystal structure, and conductive properties of the SPE were investigated. The peak temperature, crystallinity, and crystallization half‐time (t1/2) of the SPE were strongly dependent on the concentration of Y2O3 and the cooling rate. The non‐isothermal crystallization data were analyzed by the modified Avrami model, which successfully described the nonisothermal crystallization process of the SPE. The Avrami exponents suggested that the Y2O3 nanoparticles significantly affected both the nucleation mechanism and crystal growth of the PEO matrix. The nucleating and crystallization activation energies (ψ and Ec) estimated with different theories indicated that the Y2O3 nanoparticles were inclined to serve as heterogeneous nucleating agents to benefit the crystallization at lower concentration whereas as physical hindrance to inhibit the crystal growth at relatively higher concentration. The maximum conductivity (σ) of 5.95 × 10?5 S cm?1 at room temperature for the SPE was obtained at the Y2O3 weight ratio of 0.10. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
The compatibility of polyphosphazene (PPZ) polymer electrolytes with MnO2/C/SPE intercalation cathodes (IC) was investigated. Three-layered laminates of a phosphazene-based solid polymer electrolyte (SPE) film sandwiched between two MnO2-based ICs (one preloaded with lithium) were constructed. The cathodes were fabricated by either solvent casting or compression techniques. Two different crystal forms of manganese(IV) oxide—λ-MnO2 and γ-MnO2—were employed, together with methoxy ethoxy ethoxy PPZ (MEEP) SPE binder material. Carbon black was employed as the electronically conductive phase. One cathode in each laminate was prepared in the ‘chemically intercalated’ form by using LiMn2O4 in place of MnO2. The podand polymer, SMEP, which has better thin film mechanical properties than does MEEP, was complexed with lithium trifluoromethane sulfonate (Li triflate) and used as the SPE. Li+ ions were cycled galvanostatically between the two-ICs, through the phosphazene-based SPE layer. The performance of the cell was continuously monitored by electrochemical impedance spectroscopy (EIS) and by measuring the laminate thickness and voltage drop. The method of cathode fabrication (casting vs. pressing) was found to be the primary factor influencing the cycle life.  相似文献   

3.
A novel lithium solid polymer electrolyte (SPE) based on polyethylene oxide (PEO) matrix and yttrium oxide (Y2O3) as nano‐filler was prepared by solution casting technique. The Lewis acid‐based filler‐polymer coordination interactions between the surface of Y2O3 and the ether oxygen of PEO were proved by FTIR, which induced an obvious modification of crystalline morphology of the PEO‐based SPEs. Polarized optical microscope (POM) analysis shows that the induced nucleation and steric hindrance effects of Y2O3 nano‐filler result in the increased amount as well as decreased size of spherulites in the PEO matrix, respectively. Atomic force microscope (AFM) images indicate the surface morphology of PEO gets rougher as Y2O3 content increases. X‐ray diffractomer (XRD) and differential scanning calorimetry (DSC) results demonstrate the crystallinity of SPEs decreases from 51.1% to 32.5% with the Y2O3 weight ratio [m(Y2O3)/m(PEO+LiI)] increasing from 0 to 0.15. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Textured AlN‐based ceramics with improved mechanical properties were prepared by hot pressing using Si3N4 and Y2O3 as additives. The introduction of Si3N4–Y2O3 into AlN matrix led to the formation of secondary Y3AlSi2O7N2 and fiber‐like 2Hδ AlN‐polytypoid phases, the partial texture of all crystalline phases, and the fracture mode change from intergranular to transgranular. Consequently, Vickers hardness, fracture toughness and flexural strength of AlN‐based ceramics by the replacement of Y2O3 by Si3N4–Y2O3 increased significantly from 10.4±0.3 GPa, 2.4±0.3 MPa m½ and 333.3±10.3 MPa to 14.2±0.4 GPa, 3.4±0.1 MPa m½ and 389.5±45.5 MPa, respectively.  相似文献   

5.
Energy release rate and fracture toughness of amorphous aluminum nanoparticles reinforced soda‐lime silica glass (SLSG) were measured by performing fracture simulations of a single‐notched specimen via molecular dynamics simulations. The simulation procedure was first applied to conventional oxide glasses and the accuracy was verified with comparing to experimental data. According to the fracture simulations on three models of SLSG/‐Al2O3 composite, it was found that the crack propagation in the composites is prevented through following remarkable phenomena; one is that a‐Al2O3 nanoparticles increase fracture surface area by disturbing crack propagation. The other is that the deformation of a‐Al2O3 nanoparticle dissipates energy through cracking. Moreover, one of the models shows us that the crack cannot propagate if the initial notch is generated inside a‐Al2O3 nanoparticle. Such strengthening is partly due to the fact that the strength of the interface between nanoparticle and SLSG matrix is comparable to that of SLSG matrix, implying that their interface does not reduce crack resistance of the oxide glass.  相似文献   

6.
The physico-chemical properties of two protonic electrolytes BaCe0.8Y0.2O3-δ and BaCe0.9Y0.1O3-δ were investigated. The BaCe0.8Y0.2O3-δ electrolyte showed better crystallographic purity and lower amount of carbonate phase on the surface. A comparison between the BaCe0.8Y0.2O3-δ protonic electrolyte supported cell and an anionic (Ce0.8Gd0.2O1.95) one was made. The maximum power densities (IR-free) of 183 mW cm−2 and 400 mW cm−2 were obtained in H2 (R.H. 3%) at 700 °C, for the protonic and anionic electrolyte based cells, respectively.  相似文献   

7.
The ionic conduction in sintered Bi2O2-Y2O3 was investigated by measuring the conductivity and the emf of an oxygen concentration cell using the specimen tablet as electrolyte. The face centred cubic phase in this system was found to show high oxide ion conduction accompanied by a little electronic conduction when exposed to air. This phase was stable with a composition of 25 ~ 43 mol % Y2O3 over a wide range of temperatures, and the oxide ion conductivity increased with decrease in Y2O3. The conductivities of (Bi2O3)0.75 (Y2O3)0.25 were 1.6×10?1 Ω?1 cm?1 at 700°C and 1.2×10?2 Ω?1 cm?1 at 500°C values which are many times higher than those of stabilized zirconia (ZrO2)0.90(Y2O3)0.10 at corresponding temperatures. Specimens containing less than 25 mol % Y2O3 showed a phase transition at 700 ~ 580°C and the conductivities decreased remarkably below these temperatures. High oxide ion conduction in the fcc phase is attributed to the migration of oxide ion vacancies which were present in an appreciable amount.  相似文献   

8.
Rare‐earth‐doped ceramic nanophosphor (RED‐CNP) materials are promising near‐infrared (NIR) fluorescence bioimaging (FBI) agents that can overcome problems of currently used organic dyes including photobleaching, phototoxicity, and light scattering. Here, we report a NIR–NIR bioimaging system by using NIR emission at 1550 nm under 980 nm excitation which can allow a deeper penetration depth into biological tissues than ultraviolet or visible light excitation. In this study, erbium‐doped yttrium oxide nanoparticles (Er3+:Y2O3) with an average particle size of 100 and 500 nm were synthesized by surfactant‐assisted homogeneous precipitation method. NIR emission properties of Er3+:Y2O3 were investigated under 980 nm excitation. The surface of Er3+:Y2O3 was electrostatically PEGylated using poly (ethylene glycol)‐b‐poly(acrylic acid) (PEG‐b‐PAAc) block copolymer to improve the chemical durability and dispersion stability of Er3+:Y2O3 under physiological conditions. In vitro cytotoxic effects of bare and PEG‐b‐PAAc‐modified Er3+:Y2O3 were investigated by incubation with mouse macrophage cells (J774). Microscopic and macroscopic FBI were demonstrated in vivo by injection of bare or PEG‐b‐PAAc‐modified Er3+:Y2O3 into C57BL/6 mice. The NIR fluorescence images showed that PEG‐b‐PAAc modification significantly reduced the agglomeration of Er3+:Y2O3 in mice and enhanced the distribution of Er3+:Y2O3.  相似文献   

9.
The catalytic effect on the thermal decomposition behavior of ammonium perchlorate (AP) of p‐type nano‐CuO and CuCr2O4 synthesized by an electrochemical method has been investigated using differential scanning calorimetry as a function of catalyst concentration. The nano‐copper chromite (CuCr2O4) showed best catalytic effects as compared to nano‐cupric oxide (CuO) in lowering the high temperature decomposition by 118 °C at 2 wt.‐%. High heat releases of 5.430 and 3.921 kJ g−1 were observed in the presence of nano‐CuO and CuCr2O4, respectively. The kinetic parameters were evaluated using the Kissinger method. The decrease in the activation energy and the increase in the rate constant for both the oxides confirmed the enhancement in catalytic activity of AP. A mechanism based on an electron transfer process has also been proposed for AP in the presence of nano‐metal oxides.  相似文献   

10.
A nickel (Ni) nanoparticle catalyst, supported on 4‐channel α‐Al2O3 hollow fibers, was synthesized by atomic layer deposition (ALD). Highly dispersed Ni nanoparticles were successfully deposited on the outside surfaces and the inside porous structures of hollow fibers. The catalyst was employed to catalyze the dry reforming of methane (DRM) reaction and showed a methane reforming rate of 2040 Lh?1gNi?1 at 800°C. NiAl2O4 spinel was formed when Ni nanoparticles were deposited on alpha‐alumina substrates by ALD, which enhanced the Ni‐support interaction. Different cycles (two, five, and ten) of Al2O3 ALD films were applied on the Ni/hollow fiber catalysts to further improve the interaction between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and stability were improved with the deposition of Al2O3 ALD films. Among the Al2O3 ALD coated catalysts, the catalyst with five cycles of Al2O3 ALD showed the best performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2625–2631, 2018  相似文献   

11.
Highly compact green bodies are usually required to fabricate transparent or translucent polycrystalline yttrium oxide. The present work reports on the fabrication of highly dense (ρrel >98%) translucent Y2O3 from low-density green bodies by exploiting a high sinterability of nano Y2O3 powder. A commercial nano Y2O3, with a crystallite size of ca. 30 nm, was shaped by uniaxial pressing and, afterwards, densified by pre-sintering at 1500 °C followed by hot isostatic pressing. The coarsening tendency of yttria nanoparticles causes the rearrangement of particles and results in the high sinterability of nano Y2O3 even at low green densities. This improves the packing density and enables sintering to high densities, eliminating pores, and, thus, obtaining translucent Y2O3.  相似文献   

12.
Elastomer nanocomposites reinforced with carbon nanofiber (CNF) decorated with metal nanoparticles exhibit excellent thermal, mechanical, and magnetic properties with low volume fraction of the reinforcement. Generally, metal nanoparticles are used to modify the surface of CNF, to improve their dispersion and contact resistance in the polymer matrix. In this study, Fe2O3 metal nanoparticles were decorated on CNF by electrostatic attraction via a green and facile solution‐based method. Interestingly, the CNF decorated with Fe2O3 (CNF‐Fe2O3)/elastomer improved both the tensile strength and the fatigue property of plain CNF/elastomer by as much as 57.2% and 27.2%, respectively. Moreover, the CNF‐Fe2O3/elastomer exhibited superior thermal conductivity, a twofold enhancement compared with carbon fibers. The elastomer nanocomposites consisting of CNF‐Fe2O3 also exhibited enhanced magnetic properties due to synergies between the Fe2O3 nanoparticles and the CNF. The elastomer nanocomposites prepared with CNF‐Fe2O3 will open significant new opportunities for preparing advanced elastomer nanocomposites for future engineering applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45376.  相似文献   

13.
To improve the electrochemical properties and enhance the mechanical strength of solid polymer electrolytes, series of composite polymer electrolytes (CPEs) were fabricated with hybrids of thermoplastic polyurethane (TPU) electrospun membrane, polyethylene oxide (PEO), SiO2 nanoparticles and lithium bis(trifluoromethane)sulfonamide (LiTFSI). The structure and properties of the CPEs were confirmed by SEM, XRD, DSC, TGA, electrochemical impedance spectroscopy and linear sweep voltammetry. The TPU electrospun membrane as the skeleton can improve the mechanical properties of the CPEs. In addition, SiO2 particles can suppress the crystallization of PEO. The results show that the TPU‐electrospun‐membrane‐supported PEO electrolyte with 5 wt% SiO2 and 20 wt% LiTFSI (TPU/PEO‐5%SiO2‐20%Li) presents an ionic conductivity of 6.1 × 10?4 S cm?1 at 60 °C with a high tensile strength of 25.6 MPa. The battery using TPU/PEO‐5%SiO2‐20%Li as solid electrolyte and LiFePO4 as cathode shows an attractive discharge capacity of 152, 150, 121, 75, 55 and 26 mA h g?1 at C‐rates of 0.2C, 0.5C, 1C, 2C, 3C and 5C, respectively. The discharge capacity of the cell remains 110 mA h g?1 after 100 cycles at 1C at 60 °C (with a capacity retention of 91%). All the results indicate that this CPE can be applied to all‐solid‐state rechargeable lithium batteries. © 2018 Society of Chemical Industry  相似文献   

14.
J. Zhou  Q. Liu  Q. Sun  S. Hwa Chan 《Fuel Cells》2014,14(4):667-670
Aqueous‐based tape casting is a low‐cost and environment friendly technology. In this paper, large‐area fuel electrode‐supported solid oxide cells (SOCs) were fabricated by this technology in conjunction with co‐sintering process. A 10 cm × 10 cm single cell with NiO/Zr0.92Y0.08O2–δ fuel electrode, Zr0.92Y0.08O2–δ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3+δ/Ce0.9Gd0.1O2+δ air electrode has been successfully developed with improved electrode microstructure and hence the cell performance with the maximum power density of 534 mW cm–2 at 850 °C with humidified H2 as the fuel and air as the oxidant has been achieved. The optimal slurry formulations used in the fabrication of SOC were summarized for future reference purpose.  相似文献   

15.
Polystyrene/polythiophene (PSt/PTh) core/shell nanoparticles were successfully synthesized via a one-pot Fe3+-catalyzed oxidative and soap-free emulsion polymerization process. A small amount of sodium styrene sulfonate (NaSS) was used to maintain the colloidal stability of the PSt/PTh nanoparticles. Hydrogen peroxide (H2O2) and a trace of iron chloride (FeCl3) were used to carry out the free-radical polymerization of styrene and the oxidative polymerization of thiophene. The dual initiation characteristics of H2O2/FeCl3 in the PSt/PTh core/shell nanoparticle formation were investigated by observing the time-evolution of the particle morphology. In addition, photoluminescent property, particle size distribution, core/shell morphology and the formation mechanism of the PSt/PTh nanoparticles were studied by spectrofluorophotometery, dynamic light scattering (DLS), in-situ IR, zeta-potential, and time-evolution field-emission scanning electron microscope (FE-SEM) analyses.  相似文献   

16.
《Ceramics International》2023,49(10):14957-14963
The high-performance single-phase semiconductor materials with higher ionic conductivity have drawn substantial attention in fuel cell applications. Semiconductor materials play a key role to enhance ionic conductivity subsequently promoting low temperature solid oxide fuel cell (LT-SOFC) research. Herein, we proposed a semiconductor Co doped Y2O3 (YCO) samples with different molar ratios, which may easily access the high ionic conductivity and electrochemical performances at low operating temperatures. The resulting fabricated fuel cell 10% Co doped Y2O3 (YCO-10) device exhibits high ionic conductivity of ∼0.16 S cm−1 and a feasible peak power density of 856 mW cm−2 along with 1.09 OCV at 530 °C under H2/air conditions. The electrochemical impedance spectroscopy (EIS) reveals that YCO-10 electrolyte based SOFC device delivers the least ohmic resistance of 0.11–0.16 Ω cm2 at 530-450 °C. Electrode polarization resistance of the constructed fuel cell device noticed from 0.59 Ω cm2 to 0.28 Ω cm2 in H2/air environment at different elevated temperatures (450 °C to 530 °C). This work suggests that YCO-10 can be a promising alternative electrolyte, owing to its high fuel cell performance and enhanced ionic conductivity for LT-SOFC.  相似文献   

17.
Magnetic nanocomposites have attracted great attention as adsorbents for the removal of water pollutants, which respond to an external magnet that is used to remove both pollutants and composite nanomaterial traces from water. They are environmentally friendly and effective adsorbents for water treatment. In this respect, a simple in situ preparation method was used to prepare cryogel powder composite based on Fe3O4.Cu2O.Fe3O4 nanomaterials. The ionic cryogel based on 2‐acrylamido‐2‐methylpropane sulfonate sodium salt and styrene sulfonate sodium salt was prepared by crosslinking polymerization at low temperature. The new magnetic nanoparticles based on Fe3O4.Cu2O.Fe3O4 were successfully prepared inside the cryogel networks by a simple reduction–coprecipitation method based on reaction of Fe3+ with sodium sulfite and Cu2+ in the presence of hydroxylamine and ammonia solution. The thermal stability, accurate Fe3O4.Cu2O.Fe3O4 content, magnetic properties, crystal lattice structure, particle sizes and morphology of the prepared cryogel composite were evaluated. The optimum conditions such as pH, contact time, adsorbate concentrations, adsorption equilibrium and adsorption kinetics were investigated to determine the efficiency of the prepared composite as an adsorbent to remove toxic methylene blue (MB) pollutant from aqueous solution. The data for MB adsorption confirmed the high ability of the prepared composite to remove more than 4.696 mmol L?1 of MB from water during 6 min. The regeneration and reuse experiments showed excellent data for the synthesized new dye as an effective adsorbent for water treatment. © 2018 Society of Chemical Industry  相似文献   

18.
《Ceramics International》2017,43(16):13653-13660
The effects of a Cu-based additive and nano-Gd-doped ceria (GDC) sol on the sintering temperature for the construction of solid oxide cells (SOCs) were investigated. A GDC buffer layer with 0.25–2 mol% CuO as a sintering aid was prepared by reacting GDC powder and a CuN2O6 solution, followed by heating at 600 °C. The sintering of the CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy at temperatures ranging from 1000 to 1400 °C. The sintering temperature of the CuO–GDC buffer layer was decreased from 1400 °C to 1100 °C by adding the CuO sintering aid at levels exceeding 0.25 mol%. The ionic conductivity of the CuO–GDC electrolyte was maximized at 0.5 mol% CuO. However, the addition of CuO did not significantly affect the activation energy of the GDC buffer layer. Buffer layers with CuO-added GDC or nano-GDC sol-infiltrated GDC were fabricated and tested in co-sintering (1050 °C, air) with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). In addition, SOC tests were performed using button cells (active area: 1 cm2) and five-cell (active area: 30 cm2/cell) stacks. The button cell exhibited the maximum power density of 0.89 W cm−2 in solid oxide fuel cell (SOFC) mode. The stack demonstrated more than 1000 h of operation stability in solid oxide electrolysis cell (SOEC) mode (decay rate: 0.004%/kh).  相似文献   

19.
Controlling the release rate of biocides (antifouling agents) from a paint coating is a key issue for the development of multi-season antifouling marine coatings. One promising approach is the use of nanoparticles onto which biocides are adsorbed to prevent premature depletion of the biocide. Adsorption of one novel (Medetomidine) and six commercially available and widely used antifouling biocides (Chlorothalonile, Dichlofluanid, Diuron, Irgarol, Seanine, Tolylfluanid) onto oxide nanoparticles (Al2O3, CuO, MgO, SiO2, TiO2, ZnO) was investigated by HPLC and NMR in different organic solvents. Large differences in adsorption strength depending on the type of nanoparticle and solvent employed were observed. It was shown that nanoparticles coordinate preferentially with the imidazole moiety of Medetomidine. Independent of the type of particle this interaction was considerably stronger in comparison to the other biocides. However, the interaction strength was strongly dependant on the type of solvent, where the largest strongest interaction was achieved in o-xylene. In addition field tests were performed where a considerable decrease in release rate was displayed from coatings containing Medetomidine adsorbed to nanoparticles compared to coatings containing Medetomidine as single additive.  相似文献   

20.
We present a template‐free synthesis of Fe3O4/SiOC(H) nanocomposites with in situ formed Fe3O4 nanoparticles with a size of about 50 nm embedded in a nanoporous SiOC(H) matrix obtained via a polymer‐derived ceramic route. Firstly, a single‐source precursor (SSP) was synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with Fe‐acetylacetonate [Fe(acac)3] at 140°C. The SSP was heat‐treated at 170°C to generate Fe3O4 nanocrystals in the cross‐linked polymeric matrix. Subsequently, the SSP was pyrolyzed at 600°C–700°C in argon atmosphere to yield porous Fe3O4/SiOC(H) nanocomposites with the high BET surface area up to 390 m2/g, a high micropore surface area of 301 m2/g, and a high micropore volume of 0.142 cm3/g. The Fe‐free SiOC(H) ceramic matrix derived from original AHPCS is nonporous. The in situ formation of Fe3O4 nanoparticles embedded homogeneously within a nanoporous SiOC(H) matrix shows significantly enhanced catalytic degradation of xylene orange in aqueous solution with H2O2 as oxidant as compared with pure commercial Fe3O4 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号