首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin‐film composite (TFC) nanofiltration (NF) membranes were fabricated via the codeposition of catechol (CCh) and polyethyleneimine (PEI) followed by subsequent interfacial polymerization with trimesoyl chloride (TMC) on the surface of polysulfone ultrafiltration substrates. The detailed structures and surface properties were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, ζ potential analysis, and water contact angle measurement. The surface properties, including the roughness, hydrophilicity, surface potential, and NF performances, were facilely tuned through variation of the codeposition time of CCh–PEI for the prepared TFC membranes. The optimized membrane achieved a high rejection (ca. 93%) of MgCl2 with a flux of around 31 L m?2 h?1 under 0.7 MPa. The results also reveal that the codeposition process endowed the final membranes with much better structural stability in alcohol and improved chlorine resistance compared to commonly interfacial polymerized ones with PEI and TMC. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45422.  相似文献   

2.
In this work, a novel approach to improve the antifouling properties of membrane surfaces was developed. First, a polydopamine layer was attached onto the surface of an ultrahigh molecular weight polyethylene/fabric composite microporous membrane based on dopamine self‐polymerization and adhesive behavior. Then, methoxy polyethylene glycol amine was covalently bonded with the polydopamine layer via a Schiff base reaction. The physicochemical properties of the modified composite membrane surface were investigated, and the results indicated this modification could effectively enhance the membrane surface hydrophilicity. Furthermore, the protein fouling resistance of both dopamine‐coated and methoxy polyethylene glycol amine immobilized composite membranes was evaluated. It was found that a dopamine coating cannot obviously enhance the membrane antifouling properties due to its strong bioadhesion behavior. However, the antifouling properties of the composite membranes were significantly improved after being immobilized with a methoxy polyethylene glycol amine layer. Consequently, a layer‐by‐layer modified composite membrane with excellent antifouling property was obtained. The pure water flux and flux recovery ratio of the resultant membrane were 764 L m?2 h?1 and 83%, respectively. The aim of this paper was to provide an effective approach to optimizing the separation efficiency and antifouling performance of the ultrahigh molecular weight polyethylene/fabric composite membrane. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46428.  相似文献   

3.
Zn–Al layered double hydroxide (LDH)‐entrapped poly(ether sulfone) (PES) ultrafiltration membranes with four different weight percentages, 0.5, 1.0, 2.0, and 3.0%, were prepared by a phase‐inversion method. Characterization by scanning electron microscopy, atomic force microscopy and contact angle (CA), equilibrium water content, porosity, average pore size, mechanical strength, and ζ potential measurement were used to evaluate the morphological structure and physical and chemical properties of membranes. Static protein adsorption, filtration, and rejection experiments were conducted to study the antifouling properties, water permeability, and removal ability of the modified membranes. The results show that significant change occurred in the membrane morphology and that better hydrophilicity, water permeability, and antifouling ability were also achieved for the PES/LDH membranes when a proper amount of LDH was used. For example, the CA value decreased from 66.60 to 50.21°, and the pure water flux increased from 80.21 to 119.10 L m?2 h?1 bar?1 when the LDH loading was increased from 0 to 2.0 wt %. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43988.  相似文献   

4.
Poly(l ‐lactic acid) (PLLA) composite membranes were fabricated by nonsolvent induced phase separation method using polyaniline (PANI) as an additive. Membrane structure was characterized by attenuated total reflectance Fourier transform‐infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, porosity, and pore size analysis. Membrane performance was assessed by goniometer, pure water flux, molecular weight cut‐off, static adsorption and dynamic filtration. The incorporation of PANI significantly improved the hydrophilicity and permeability of PLLA composite membrane, and eventually enhanced the antifouling performance of composite membrane compared with pure PLLA membrane. It was demonstrated that PLLA composite membrane with 1 wt % PANI had better separation and antifouling performance compared with other composite membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44452.  相似文献   

5.
Membrane bioreactor (MBR) as a hybrid technology for wastewater treatment is becoming more popular for wastewater treatment. However, membrane fouling has hindered the widespread application of MBRs. Many efforts have been done for fouling mitigation. In this study, high flux and antifouling microfiltration membranes with unique surface structure, high surface porosity, and permeability were prepared by electrospinning technique. Initially, the optimum thickness of electrospun polyacrylonitrile (PAN) membranes was determined and then, electrospun PAN membrane at optimum thickness were prepared by embedding para‐aminobenzoate alumoxane (PABA) nanoparticles at different concentrations. The effect of PABA nanoparticles on membrane performance was investigated. To investigate the characterization of the prepared membranes Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and water contact angle measurement were employed. The flux recovery ratio results revealed that the antifouling properties of the electrospun PAN membrane were enhanced by modification. The 3 wt % electrospun PABA embedded PAN had the best permeability, hydrophilicity, and antifouling properties among the fabricated membranes and showed remarkable reusability during filtration. The results obtained suggested that the high flux and antifouling electrospun PAN membranes embedded PABA nanoparticles could be used as MBR membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45738.  相似文献   

6.
A hydrophilic compound, taurine, was investigated as an additive in the interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) to prepare thin‐film composite (TFC) membranes. The resulting membranes were characterized by X‐ray photoelectron spectroscopy and attenuated total reflectance–Fourier transform infrared spectroscopy. The morphology and hydrophilicity of the membranes were investigated through scanning electronic microscopy and water contact angle measurements. The separation performance of the TFC membranes was investigated through water flux and salt rejection tests. The protein‐fouling resistance of the films was evaluated by water recovery rate measurements after the treatment of bovine serum albumin. The membrane containing 0.2 wt % taurine showed the best performance of 92% MgSO4 rejection at a flux of 31 L m?2 h?1 and better antifouling properties than the PIP–TMC membranes. An appropriately low concentration of taurine showed the same MgSO4 rejection as the PIP–TMC membranes but a better fouling resistance performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41620.  相似文献   

7.
Cellulose nanocrystals (CNCs) were used as a sustainable additive to improve the hydrophilicity, permeability, antifouling, and mechanical properties of blend membranes. Different CNC loadings (0–1.2 wt %) in cellulose acetate (CA) membranes were studied. The blend membranes were prepared by a phase‐inversion process, and their chemical structure and morphological properties were characterized by attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, porosity, and mean pore size and contact angle measurement. The blend membranes became more porous and more interconnected after the addition of CNCs. The thickness of the top layer decreased and a few large holes in the porous substrate appeared with increasing CNC loading. In comparison with the pure CA membranes, the pure water flux of the blend membranes increased with increasing CNC loading. It reaches a maximum value of 76 L m?2 h?1 when the CNC loading was 0.5 wt %. The antifouling properties of the CA membrane were significantly improved after the addition of CNCs, and the flux recovery ratio value increased to 68% with the addition of 0.5 wt % CNCs. In comparison with that of the pure CA membranes, the tensile strength of the composite membranes increased by 47%. This study demonstrated the importance of using sustainable CNCs to achieve great improvements in the physical and chemical performance of CA ultrafiltration membranes and provided an efficient method for preparing high‐performance membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43946.  相似文献   

8.
In this reported study, poly(vinylidene fluoride) (PVDF) and polyacrylonitrile (PAN) blend flat‐sheet membranes were prepared via a phase‐inversion method with various loadings of multiwalled carbon nanotubes. The effects of the carbon nanotubes (CNTs) on the performance and morphology of the PVDF–PAN composites were investigated via tests of the pure water flux and rejection of bovine serum albumin, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, and contact angle (CA) analysis. The experimental results demonstrate that the CNTs contributed to the improvement of the flux and hydrophilicity of the membranes. The maximum value of the flux was 398.1 L m?2 h?1, and the value of CA for the composite membranes was found to be 48°. In addition, the results of the mechanical properties tests illustrate that the brittleness and plasticity of the hybrid membranes were greatly improved by the presence of the CNTs. The flux recovery ratio was maintained at 75%; this demonstrated that the PVDF–PAN membranes enhanced with the CNTs possessed good antifouling performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46155.  相似文献   

9.
To improve the performance of nanofiltration (NF) membranes, a chiral mesogenic compound, a positively charged compound, and a negatively charged compound were grafted to chitosan, respectively. Series of novel composite NF membranes were prepared by over‐coating the polysulfone ultrafiltration membrane with the mixture of chitosan and modified chitosan. The chiral mesogenic compound, the positively charged compound, the negatively compound and their chitosan derivatives were characterized by infrared spectrophotometer, differential scanning calorimetry, polarized optical microscope; the structure of the membrane was characterized by scanning electron microscopy. The performance of composite NF membranes was strictly related to the novel compounds grafted to chitosan and its composition. The rejection reached the maximum of 95.7% for CaCl2 with P2‐7 composite NF membrane, corresponding flux was 3155 Lm?2h?1. The rejection reached the maximum of 93% for Na2SO4 with P3‐5 composite NF membrane, corresponding flux was 3879 Lm?2h?1. Comparing with conventional NF membranes, the membranes were used in low pressure with high flux, especially for the separation of high‐valence ions from solution. The membranes were typical charged NF membranes. POLYM. ENG. SCI., 57:22–30, 2017. © 2016 Society of Plastics Engineers  相似文献   

10.
Inspired by the specific amino acid sequence Asn-Pro-Ala (NPA) of water channel aquaporins (AQPs), we fabricated polyamide (PA) nanofiltration (NF) membranes by introducing reduced glutathione (GSH) in interfacial polymerization (IP) method. Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential and static water contact angle measurement were employed to characterize the chemical composition, morphology, electronegativity and hydrophilicity of the NF membranes. The water flux of GSH/PIP-TMC NF membrane reached 32.00 L m-2 h-1 at 0.2MPa, which was approximately twice than that of pristine PIP-TMC NF membrane when the ratio of GHS to piperazidine (PIP) was 40% during IP process. More water channels were built as GSH was embedded into PA layer. The fabricated NF membranes also took on potent rejection for dyes and Na2SO4. This study presents a simple and facile method to simulate water channels-based biological materials which may find potential application in water treatment.  相似文献   

11.
Sulfonated poly(amide‐imide) (SPAI) copolymer was synthesized, characterized, and blended into poly(ether sulfone) (PES)/dimethylacetamide casting solutions to prepare ultrafiltration membranes. Different weight ratios of the copolymer (0–10 wt %) were mixed in the PES casting solution. The analyses of contact angle and attenuated total reflection‐Fourier transform infrared spectra were used to study hydrophilicity and physicochemical properties of the membrane surface, respectively. The membranes were further characterized by scanning electron microscopy images, ultrafiltration performance, and fouling analyses. The outcomes showed that addition of the SPAI in the PES matrix improved considerably the membranes hydrophilicity. Moreover, with increasing SPAI concentration, the porosity, flux recovery ratio, and pure water permeability of the modified membranes were improved. The pure water flux was increased from 3.6 to 12.4 kg/m2 h by increasing 2 wt % SPAI. The antifouling property of the modified PES membranes against bovine serum albumin, tested by a dead‐end filtration setup revealed that bovine serum albumin rejection of the obtained membrane was also enhanced and the antifouling properties of the blending membranes were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46477.  相似文献   

12.
In this work, the redox‐initiated graft polymerization of acrylic acid (AA) onto the surface of polyamide thin film composite membranes has been carried out to enhance membrane separation and antifouling properties. The membrane surface characteristics were determined through the attenuated total reflection Fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy, and water contact angles. The membrane separation performance was evaluated through membrane flux and rejection of some organic compounds such as reactive red dye (RR261), humic acid, and bovine serum albumin in aqueous feed solutions. The experimental results indicated that the membrane surfaces became more hydrophilic and smoother after grafting of AA. The modified membranes have a better separation performance with a significant enhancement of flux at a great retention. The fouling resistance of the modified membranes is also clearly improved with the higher maintained flux ratio and the lower irreversible fouling factor compared to the unmodified one. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45110.  相似文献   

13.
In this study polysulfone membranes with antifouling and hydrophilic properties were synthesized using poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (AMPS) as an additive for the first time. Different wt % of AMPS was used to prepare polysulfone membranes by phase inversion method. The role of AMPS on the porosity, pore size distribution, hydrophilicity, and antifouling nature was investigated and analyzed in detail. Characterization techniques like field emission scanning electron microscope, atomic force microscopy, and imageJ software were used to characterize the morphology of prepared membranes. There is positive effect of the additive addition on all the membrane parameters like Pure water flux [101.76 L/(m2 h)] (MR0) to 464.06 L/(m2 h) (MR4)], hydraulic permeability [0.65 (MR0) to 2.01 (MR4)], equilibrium water content [21.74 (MR0) to 71.45 (MR4)], and porosity [0.024 (MR0) to 0.58 (MR4)]. Response surface methodology was used for the optimization of bovine serum albumin (BSA) flux and rejection. The results of the morphological as well as permeation studies depicted that permeate flux and antifouling nature were increased with the amount of AMPS present in the membrane matrix. The antifouling study of the prepared membranes was undertaken by using BSA solution of 1000 mg/L. Positive results were seen with the increase in amount of AMPS, since, the total membrane resistance has been decreased from 0.95 (MR0) to 0.74 (MR4). Separation of humic acid from aqueous medium was also performed with the best performing membrane (MR4, having the highest amount of AMPS). Separation efficiency of 100% and 94% were obtained using 10 mg/L and 50 mg/L of HA, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45290.  相似文献   

14.
To endow the surface of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes with hydrophilicity and antifouling property, physical adsorption of amphiphilic random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and poly(methyl methacrylate) (PMMA) (P(PEGMA‐r‐MMA)) onto the PVDF membrane was performed. Scanning electron microscopy (SEM) images showed that the adsorption process had no influence on the membrane structure. Operation parameters including adsorption time, polymer concentration, and composition were explored in detail through X‐ray photoelectron spectroscopy (XPS), static water contact angle (CA), and water flux measurements. The results demonstrated that P(PEGMA‐r‐MMA) copolymers adsorbed successfully onto the membrane surface, and hydrophilicity of the PVDF MF membrane was greatly enhanced. The antifouling performance and adsorption stability were also characterized, respectively. It was notable that PVDF MF membranes modified by facile physical adsorption of P(PEGMA58r‐MMA33) even showed higher water flux and better antifouling property than the commercial hydrophilic PVDF MF membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3112–3121, 2013  相似文献   

15.
cis,cis‐1,3,5‐Triaminocyclohexane (TAC) was synthesized and used to prepare composite nanofiltration (NF) membranes by interfacial polymerization with trimesoyl chloride (TMC). The surface elemental composition, morphology, and hydrophilicity of the prepared NF membranes were characterized. The separation performances were examined with various salts and polyethylene glycol (PEG400, PEG600) solutions. The effects of preparation conditions were also systematically studied. The NF membrane was negatively charged and exhibited a salt rejection in the order Na2SO4 (98.2%) > MgSO4 (90.8%) > MgCl2 (84.5%) > NaCl (54.6%). The water permeability was 1.56 L m?2 h?1 bar?1, and the molecular weight cutoff was 600 Da. The TAC/TMC membrane exhibited some characteristics that were different from the ones made from common diamines such as m‐phenylenediamine: (1) the surface was smoother, without a ridge‐and‐valley structure; (2) there were two kinds of crosslinking points in the polyamide chains; (3) the active layer was formed faster (only 5 seconds was required to reach a Na2SO4 rejection of 98%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43511.  相似文献   

16.
For the applications of reverse osmosis (RO) process, membrane fouling caused by organic molecule adsorption is still a serious problem which significantly decreases membrane lifespan and increases operation costs. In this present article, we report the thin film composite (TFC) RO membrane functionalized with tris(hydroxymethyl)aminomethane (THAM) using one‐step method for improved antifouling property. The results of surface characterization indicated that THAM was successfully grafted onto the active layer of membrane by covalent linkage. Mult‐hydroxyl‐layer was generated and remained steadily on TFC membrane surface after modification. The contact angle decreased from 75.9 ± 3.0° to 46.9 ± 2.3°, which showed a distinct improvement of membrane surface hydrophilicity after modification. The grafted THAM improved water flux by 28.3%, while salt rejection was almost unchanged in membrane property tests. The modified membranes presented preferable antifouling property to foulants of bovine serum albumin, sodium alginate, and dodecyl trimethyl ammonium bromide than that of pristine membranes during dynamic fouling experiments. The method in this study provided an effective way to improve antifouling property of the polyamide thin‐film‐composite RO membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45891.  相似文献   

17.
Forward osmosis (FO) membranes were prepared by a coating method with poly(ethylene glycol) crosslinked sulfonated polysulfone (SPSf) as a selective layer. The poly(ether sulfone)/SPSf substrate was prepared by phase inversion. The composite membranes were characterized with respect to membrane chemistry (by attenuated total reflectance/Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy), hydrophilicity (by static contact angle measurement), and surface morphology (by scanning electron microscopy and atomic force microscopy). The FO performance was also characterized. The effects of the crosslinker concentration on the hydrophilicity and FO performance were investigated. The crosslinked membrane exhibited a high hydrophilicity with a lowest contact angle of 15.5°. Under FO tests, the membranes achieved a higher water flux of 15.2 L m?2 h?1 when used against deionized water as the feed solution and a 2 mol/L sodium chloride (NaCl) solution as the the draw solution. The membranes achieved a magnesium sulfate rejection of 96% and an NaCl rejection of 55% when used against a 1 g/L inorganic salt solution as the feed solution and a 2 mol/L glucose solution as the draw solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43941.  相似文献   

18.
In forward osmosis, internal concentration polarization is related to the properties (e.g., hydrophilicity, porosity, structural resistant) of membrane support layer. In this work, polyethylene glycol with a low molecular weight of 400 Da was introduced as a support layer additive during the fabrication of thin-film polyamide-polysulfone composite forward osmosis membranes. The forward osmosis performances including water flux and reverse salt flux of the membranes were tested in the mode of AL-FS where the membrane active layer faced toward feed solution. Results showed that the addition of polyethylene glycol would reduce internal concentration polarization and improve membrane performance in forward osmosis by means of enhancing membrane hydrophilicity and changing pore morphologies of membrane support layer. The membrane prepared with 6 wt.% polyethylene glycol was found to exhibit the highest water flux of 47.4 Lm?2h?1 with a reverse salt flux of 7.6 gm?2h?1 when using DI water and 2.0 M NaCl as the feed and the draw solution, respectively, indicating an optimal polyethylene glycol dosage of 6 wt.% in this work.  相似文献   

19.
In this study, antifouling poly(vinyl chloride) (PVC) blend membranes were prepared by blending the PVC based amphiphilic copolymer PVC‐g‐poly(hydroxyethyl methacrylate) (PVC‐g‐PHEMA), synthesized by atom transfer radical polymerization (ATRP), into the hydrophobic PVC matrix via the nonsolvent‐induced phase separation method. The in situ ATRP reaction solutions were also used as the blend additives to improve membrane performance. Attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that the blend membranes based on the two blend routes exhibited similar surface chemical compositions. The membrane morphology and surface wettability were determined by scanning electronic microscopy and water contact angle measurement, respectively. The blend membranes showed improved water permeability, comparable rejections and enhanced antifouling properties compared with the pure PVC membrane. The PVC blend membranes also had excellent long‐term stability in terms of chemical compositions and fouling resistance. The results demonstrated that ATRP was a promising technique to synthesize amphiphilic copolymer and prepare stable blend antifouling membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45832.  相似文献   

20.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号