首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, a series of diblock copolymer polyethylene‐b‐ poly(ethylene glycol)s (PE‐b‐PEGs) with various molecular weight of polyethylene segment was blended with linear low‐density PE. The PE/PE‐b‐PEG blend porous membranes with high porosity were obtained by thermally induced phase separation (TIPS) process. The isothermal crystallization kinetics of PE/LP/PE‐b‐PEG blends indicated that the introduction of PE‐b‐PEG could inhibit the growth rate of polyethylene crystals which could increase the pore size and porosity of the membranes. The PE/PE‐b‐PEG blend membranes with PE1300‐b‐PEG2200 showed the largest pore size and porosity due to its crystallization behavior during TIPS. The surface of the membranes became smoother and the morphology of the membranes could be effectively tuned by introducing PE‐b‐PEG. Compared with the PE membrane, the PE/PE‐b‐PEG blend membranes exhibited higher hydrophilicity (the water contact angle decreased from 112° to 84°), water permeability (the permeation flux increased from 80 to 440 L/m2 h under 0.1 MPa), rejection performance (completely reject carbon particles in the filtration of carbon ink solution), and fouling resistance (the value of protein adsorption dropped from 0.25 to 0.05 mg/cm2). The hydrophilicity and fouling resistance of PE/PE‐b‐PEG blend membranes increased as the length of PE segment in PE‐b‐PEGs decreased. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46499.  相似文献   

2.
A novel thin film composite‐type forward osmosis (FO) membrane with inhibited concentration polarization phenomenon and expectant separation performance was prepared by continuous interfacial polymerization method. The nylon‐6,6 microfiltration membrane with the average pore size of 5 μm and the self‐wetting property was for the first time used as the supporting layer of the FO membranes, which decreased the mass transfer resistance in the porous supporting layer. The skin layer was prepared via the continuous interfacial polymerization of polyamide as a relatively dense layer, with the reverse salt flux of less than 1 g/m?2 h?1. The mass transfer resistance and the reverse salt flux of the prepared FO membranes were remarkably reduced due to the functional design of the double‐layer structure, which effectively enhanced the separation selectivity and restrain the concentration polarization of the FO membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45133.  相似文献   

3.
In a previous study, we proved that tailoring the polyamide backbone stiffness is an effective way to fabricate high‐performance polyamide nanofiltration (NF) membranes. However, in the previous study, we mainly focused on the flat membrane and did not consider its chlorine tolerance. In this study, by regulating the aqueous‐phase compositions in the interfacial polymerization process, chlorine tolerance on NF hollow‐fiber membranes was endowed while the membrane performance stayed high. The experimental results show that when the ratio of Piperazine (PIP)–bisphenol F (BPF)/2,2′‐bis(1‐hydroxyl‐1‐trifluoromethyl‐2,2,2‐triflutoethyl)‐4,4′‐methylene dianiline (BHTTM) was 5:1:4, the NF membrane possessed a permeate flux of 21.0 L m?2 h?1 bar?1 and an Na2SO4 rejection up to 90.0%. X‐ray photoelectron spectroscopy analysis also confirmed that the polymerization degree of the PIP–BPF–BHTTM NF membrane was the highest. Moreover, the NF membrane could tolerate active chlorine to over 10,000 ppm h Cl. After the active chlorine treatment, the permeate flux increased over 30.0 L m?2 h?1 bar?1, and the Na2SO4 rejection was about 90.0%. Although the PIP–BHTTM NF membrane also possessed good chlorine tolerance, its permeate flux (after active chlorine treatment) was only 60% of that of the PIP–BPF–BHTTM NF membrane. Therefore, the PIP–BPF–BHTTM NF membrane possessed a combination of high flux and high chlorine tolerance and showed good potential in water treatment in rigorous environments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46482.  相似文献   

4.
Highly selective composite imprinted membrane for p‐hydroxybenzonic acid (p‐HB) was prepared by using semicovalent imprinting technique. A thermally reversible covalent bond was used to link p‐HB molecule to a functional alkoxysilane monomer to generate covalently bound imprint precursor. This precursor was incorporated into a cross‐linked functional silica sol with the tetraethoxysilane as cross‐linker via a typical acid‐catalyzed, sol‐gel synthesis. Then, the SCIM was prepared through dipping and grafting on the upper side and inner pores of the Al2O3 microporous membrane and then removing of the template molecule after thermal treatment. Compared with composite imprinted membrane via noncovalent imprinting approach as well as the black Al2O3 microporous membrane, the SCIM exhibited higher membrane flux and selective rebinding of p‐HB as well as showing excellent permeability for p‐HB. Response surface methodology was used to investigate the best combination of separation conditions in the dynamic separation process. The optimal conditions for the separation of p‐HB from salicylic acid were as follows: the p‐HB concentration of 5 mg L?1, the temperature of 10°C, and the flow rate of 1 mL min?1. Under these conditions, the experimental selective separation factor was 32.75 ± 0.91%, which was close to the predicted selectivity coefficient value. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40621.  相似文献   

5.
In this research, OMMT/PVDF‐based cationic exchange membranes were prepared by two‐step chemically induced grafting method. The various preparation conditions, such as alkaline treatment, initiation, and grafting conditions, and the relationship between the preparation conditions and the cationic exchange membrane performance, such as area resistance and cationic permselectivity, were investigated. The chemical and crystal changes on the membrane surface were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectrum (EDS), and X‐ray diffraction (XRD), respectively. Surface morphological changes were also characterized by scanning electron microscopy (SEM). The results reveal that the OMMT/PVDF‐based cationic exchange membrane was successfully prepared by this method. The OMMT/PVDF‐based cationic exchange membrane doped 8.5% OMMT prepared using optimum preparation parameters showed excellent basic properties. The area resistance was measured as low as 1.8 Ω cm2, while the cationic permselectivity was as high as 93.4%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2753–2763, 2013  相似文献   

6.
The synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene by oxidative coupling of 2,4,6-trinitrotoluene in the presence of metal catalysts has been studied. The effects of reaction parameters on product yields have been evaluated and mechanisms for the reaction are proposed.  相似文献   

7.
Competitive transport of hydrochloric acid and zinc chloride has been investigated in a two‐compartment mixed cell with an anion‐exchange membrane Neosepta‐AFN developed and produced by Tokuyama Soda Co. These experiments have proved that hydrochloric acid permeates well through the membrane used but, on the other hand, zinc chloride is not effectively rejected. The flux of zinc chloride has been found to be increasing with increasing acid and salt concentrations. Furthermore, it has been found that it is approximately one order of magnitude higher than that found in the case of simultaneous transport of sulfuric acid and zinc sulfate through the same membrane. The further calculations concerning the ionic equilibria with sorption isotherms for the HCl? ZnCl2 system, which have been measured experimentally, have revealed that high flux of ZnCl2 is due to the fact that a considerable amount of zinc chloride in the membrane is in the form of ZnCl3? complex, which is relatively small and passes well through this membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1391–1397, 2006  相似文献   

8.
Novel copolymer membranes derived from three types of adamantyl group‐containing methacrylate derivatives and 3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA) were synthesized via free radical polymerization. The thermal and permeation properties of these copolymer membranes were investigated. Copolymer membranes with less than 11.9 mol % adamantane content exhibited good membrane forming abilities that are suitable for permeation measurement. The decomposition temperature of all copolymers increased up to approximately 40–80°C with increasing adamantane content compared with poly(SiMA). Moreover, the glass transition temperature (Tg) of all copolymers increased up to approximately 46–60°C with increasing adamantane content compared with the theoretical value, which was estimated from Fox equation. 1‐Adamantyl methacrylate copolymer had the highest fractional free volume among the three types of adamantly group‐containing methacrylate derivatives. The gas permeability coefficient of this copolymer increased by 22–45% with increasing adamantane content compared with that of poly(SiMA). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43129.  相似文献   

9.
Polyphenylsulfone was sulfonated by two different methods: reaction with SO3 and reaction with (CH3)3SiSO3Cl. The products were characterized, and the advantages of both methods are discussed. Much more homogeneous products were obtained from the reaction with (CH3)3SiSO3Cl, along with better control of the sulfonation degree. An alternative method of membrane preparation led to an asymmetric structure, which allowed the combination of high mechanical stability and high proton conductance. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2820–2827, 2002  相似文献   

10.
A series of novel solvent‐soluble polyimides based on the diamine of 3,3‐bis[4‐(4‐aminophenoxy)phenyl] phthalide (BAPP) were prepared. The effects of the dianhydride structures on the pervaporation performance of aqueous alcohol mixtures through these polyimide membranes were studied. The BAPP‐based polyimide membranes exhibited water permselectivity during all process runs. The permeation rate increased with the addition of bulky groups to the polyimide backbone. The effects of the feed solution concentration, feed solution temperature, and carbon atom number of the feed alcohol on the pervaporation performance were also investigated systematically. Optimum pervaporation results, a separation factor of 22 and a permeation rate of 270 g/m2 h, were obtained for a 90 wt % feed aqueous ethanol solution through a 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride polyimide membrane at 25°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2046–2052, 2005  相似文献   

11.
Recent studies on conducting polymers have demonstrated that polymers of 3‐substituted thiophene produce very stable compounds. Although this kind of substitution improves the regularity, structural defects still exist. To overcome this drawback, the polymerization of 3,4‐disubstituted thiophene is proposed as a convenient way of synthesizing regular, highly conjugated conductive polymers. Our interest is thus focused on the synthesis of tetra‐substituted thiophene derivatives, their polymerization, electrochemical properties, spectral characteristics, oxidizing potential, and the feasibility of photocells development. In this article, we report the synthesis and characterization of 3′,4′‐dibromo‐2,2′:5′,2″‐terthiophene which, as such or modified, may be a good starting product for obtaining new monomers of 3′,4′‐disubstituted terthiophenes, that would allow the effect of the substituents on the properties of the respective polymers to be studied. In addition, the monomer was electropolymerized and the resulting deposit was electrochemically and morphologically characterized. Two conclusions were drawn: first, more uniform and homogeneous layers than those of polythiophene are obtained; second, the thin layers of the polymer, electron acceptors, absorb in the visible. Finally, photocells were assembled to investigate their photovoltaic effect. Although the so prepared solar cells showed some photovoltaic effect, the yield was low.© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5314–5321, 2006  相似文献   

12.
A macromolecular hindered phenol antioxidant, polyhydroxylated polybutadiene containing thioether binding 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (PHPBT‐b‐TPH), was synthesized via a two‐step nucleophilic addition reaction using isophorone diisocyanate (IPDI) as linkage. First, the ? OH groups of PHPBT reacted with secondary ? NCO groups of IPDI to form the adduct PHPBT‐NCO, then the PHPBT‐b‐TPH was obtained by one phenolic ? OH of 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (TPH) reacting with the PHPBT‐NCO. The PHPBT‐b‐TPH was characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H‐NMR), 13C‐NMR, and thermogravimetric analysis, and its antioxidant activity in natural rubber was studied by an accelerated aging test. Influences of reaction conditions on the two nucleophilic reactions between ? OH group and ? NCO group were investigated. In addition, catalytic mechanism for the reaction between PHPBT‐NCO and TPH was discussed. The results showed that the adduct PHPBT‐NCO could be obtained by using dibutyltin dilaurate (DBTDL) as catalyst, and the suitable temperature and DBTDL amount were 35°C and 3 wt %, respectively. However, triethylamine (TEA) was more efficient than DBTDL to catalyze the reaction between PHPBT‐NCO and TPH because of steric hindrance effect. In addition, it was found that the thermal stability and antioxidant activity of PHPBT‐b‐TPH were higher than those of the low molecular weight antioxidant TPH. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40942.  相似文献   

13.
To develop ion‐exchange membranes for application in severe conditions, such as those with high temperatures, strongly oxidizing environments, or organic solvents, new hollow‐fiber anion‐exchange hybrid membranes were prepared by the immersion of brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) base hollow fibers in a tetraethoxysilane–ethanol solution followed by sol–gel and quaternary amination. Compared to conventional polymeric charged membranes, the prepared hybrid membranes were higher in both thermal and dimensional stabilities. The results suggest that tetraethoxysilane concentration was an important factor affecting the membrane's intrinsic properties. When the tetraethoxysilane concentration was in the range 15–45%, the final hollow‐fiber anion‐exchange hybrid membranes had an ion‐exchange capacity of 1.9–2.0 mmol/g, a water uptake of.83–1.23 g of water/g of dry weight, and a dimensional change ratio of 13–18%. An evaluation on the membranes' separation performances is underway. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Poly(l ‐lactic acid) (PLLA) composite membranes were fabricated by nonsolvent induced phase separation method using polyaniline (PANI) as an additive. Membrane structure was characterized by attenuated total reflectance Fourier transform‐infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, porosity, and pore size analysis. Membrane performance was assessed by goniometer, pure water flux, molecular weight cut‐off, static adsorption and dynamic filtration. The incorporation of PANI significantly improved the hydrophilicity and permeability of PLLA composite membrane, and eventually enhanced the antifouling performance of composite membrane compared with pure PLLA membrane. It was demonstrated that PLLA composite membrane with 1 wt % PANI had better separation and antifouling performance compared with other composite membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44452.  相似文献   

15.
Fluorinated polyimides were prepared from 2,2′,6,6′-tetrafluorobenzidine and four conventional dianhydride monomers by a solution polycondensation reaction followed by a chemical imidization. Polyimide based on 2,2′,6,6′-tetrafluorobenzidine and hexafluoroisopropylidene bis(3,4-phthalic anhydride) (6FDA) is soluble in organic solvents such as NMP, DMA, DMF, THF, chloroform, and acetone while those based on 2,2′,6,6′-tetrafluorobenzidine and pyromellitic dianhydride (PMDA), benzophenone-3,3′,4,4′-tetracarboxylic acid dianhydride (BTDA), diphenylether-3,3′,4,4′-tetracarboxylic acid dianhydride (ETDA) are not. Polyimide from 2,2′,6,6′-tetrafluorobenzidine and 6FDA possesses high optical transparency at 350–700 nm and has a in-plane refractive index of 1.558 at 632.8 nm. All polyimides exhibit glass transition temperatures above 350°C. They also possess very high thermal stability. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1605–1609, 1998  相似文献   

16.
A new approach for gas-phase modification of ultra-high-molecular-weight polyethylene (UHMWPE) film for synthesis of proton exchange membranes (PEMs) has been successfully realized. First, the membrane precursors have been prepared by soaking the films in a monomers/AIBN solution followed by their modification with polystyrene (PS) in styrene vapor at 110°C. The developed method is characterized by high efficiency, simplicity, and ecological purity. The modified UHMWPE films containing up to 60 wt% of PS have been obtained. Then, PEMs were prepared by sulfonation of these precursors. According to energy-dispersive X-ray spectroscopy of the sulfonated samples, almost uniform distribution of PS through the film thickness was observed. The membranes with an ion exchange capacity up to 2.7 mmol/g and proton conductivity up to 60 mS/cm (water, 25°C) were obtained. Comparative tests of the obtained UHMWPE-sulfonated PS and commercial Nafion-115 membranes in a hydrogen–air fuel cell have been carried out. It has been shown that the cell with the synthesized membranes exhibits better performance than that with Nafion-115.  相似文献   

17.
Novel facilitated‐transport mixed‐matrix membrane (MMM) were prepared through the incorporation of polydopamine (PDA) microspheres into a poly(amide‐b‐ethylene oxide) (Pebax MH 1657) matrix to separate CO2–CH4 gas mixtures. The Pebax–PDA microsphere MMMs were characterized by Fourier transform infrared spectroscopy, scanning electron microcopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The PDA microspheres acted as an adhesive filler and generated strong interfacial interactions with the polymer matrix; this generated a polymer chain rigidification region near the polymer–filler interface. Polymer chain rigidification usually results in a larger resistance to the transport of gas with a larger molecular diameter and a higher CO2–CH4 selectivity. In addition, the surface of PDA microspheres contained larger numbers of amine, imine, and catechol groups; these were beneficial to the improvement of the CO2 separation performance. Compared with the pristine Pebax membrane, the MMM with a 5 wt % PDA microsphere loading displayed a higher gas permeability and selectivity; their CO2 permeability and CO2–CH4 selectivity were increased by 61 and 60%, respectively, and surpassed the 2008 Robeson upper bound line. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44564.  相似文献   

18.
In pursuit for new materials for recovery of noble metals, novel anion exchangers, based on new type of core–shell polymeric supports have been synthesized. The designed matrices, with reactive chloromethyl groups concentrated on a surface of the polymeric base, the Amberlite XAD‐4 adsorbent, have been modified using ethylenediamine and polyethyleneimine. The obtained ion exchangers were employed in processes of sorption of gold, platinum, and palladium chlorocomplexes, then, they were compared to similar resins based on volumetric polymeric supports. The studies covered porosity measurements, determination of sorption behavior in the presence of counter ions as well as kinetic and column studies. Ultimately, an attempt to access a core–shell character of the resins has been made using digital‐optical microscopy. The proceeded analyses allowed to determine the localization of the resins’ functionalities and their advantages over traditional ion exchange resins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43841.  相似文献   

19.
A polymeric gas separation membrane utilizing polybenzimidazole based on 4,4′‐(hexafluoroisopropylidene)bis(benzoic acid) was prepared. The synthesized membrane has an effective permeating area of 8.3 cm2 and a thickness of 30 ± 2 µm. Gas permeation properties of the membrane were determined using H2, CO2, CO, and N2 at temperatures ranging from 24°C to 200°C. The PBI‐HFA membranes not only exhibited excellent H2 permeability, but it also displayed superior gas separation performance particularly for H2/N2 and H2/CO2. The permeation parameters for both permeability and selectivity [ and α(H2/N2); and α(H2/CO2)] obtained for the new material were found to be dependent on trans‐membrane pressure difference as well as temperature, and were found to surpass those reported by Robeson in 2008. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42371.  相似文献   

20.
The adsorption of AuI complex onto acetate cellulose‐polyaniline membranes was investigated. Kinetic experiments showed a rapid adsorption of this complex, which was attributed to an ion‐exchange mechanism. Equilibrium adsorption results were represented by the Langmuir model, showing a correlation coefficient of 0.9852. Langmuir parameters K and Qm were found to be 0.2937 L mg?1 and 1.2394 mg g?1, respectively. Approximately 94% of AuI was adsorbed when a solid/liquid ratio of 40 g L?1 (grams of membrane/ liter of solution) was used. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号