首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines an accuracy of CP‐PC‐SAFT attached by the 4C cross‐association scheme and zero values of binary parameters in predicting the high temperature‐high pressure phase behavior in aqueous systems of aromatic compounds containing one and two benzoic rings, CO2 and cis‐decalin. In spite of the noteworthy complexity of these systems and the entirely predictive nature of the current approach, it correctly predicts the topology of phase behavior and typically yields the quantitatively accurate estimations of critical loci and the hydrocarbon–rich liquid phases in wide range of conditions. The available single phase volumetric data are also predicted accurately. Unfortunately, it is not a case of the water–rich phases exhibiting very small hydrocarbon concentrations. Nevertheless, the model is still capable of capturing the solubility minima characteristic for these phases around the room temperature. Predictions of the recent version of Simplified PC‐SAFT proposed by Liang et al. (2014) are also discussed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4124–4135, 2017  相似文献   

2.
Phase equilibrium data of CO2 + molten polymer systems are of great relevance for chemical engineers because these are necessary for the optimal design of polymer final‐treatment processes. This kind of processes needs information about gas solubilities in polymers at several temperatures and pressures. In this work, CO2 solubilities in molten polymers were modeled by the perturbed chain‐statistical associating fluid theory (PC‐SAFT) equation of state (EoS). For comparison, the solubilities were also calculated by the lattice gas theory (LGT) EoS, and by the well‐known Peng‐Robinson (PR) cubic EoS. To adjust the interactions between segments of mixtures, there were used classical mixing rules, with one adjustable temperature‐dependent binary parameter for the PC‐SAFT and PR EoS, and two adjustable binary parameters for the LGT EoS. The results were compared with experimental data obtained from literature. The results in terms of solubility pressure deviations indicate that the vapor–liquid behavior for CO2 + polymer systems is better predicted by the PC‐SAFT model than by LGT and PR models. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

3.
Supercritical CO2 extraction of soybean oil was investigated. The fatty acid composition was determined using GC. The solubility and kinetic experiments were performed in the pressure range of 100–300 bar and in the temperature range of 313–323 K. The solubility data were correlated using empirical equation proposed by Gordillo et al. Mass transfer model described by Martinez et al. was used to describe the kinetic curves of soybean oil. The main fatty acids of soybean oil were linoleic, oleic, palmitic, stearic and linolenic acid. The improved Gordillo et al. equation was proposed to correct the effect of temperature on the solubility. The new equation was successfully applied for calculating the solubility of fatty acids and soybean oil in supercritical CO2.  相似文献   

4.
In this work, the equilibrium solubility of CO2 in a 1‐diethylamino‐2‐propanol (1DEA2P) solution was determined as a function of 1DEA2P concentration (over the range of 1–2 M), temperature (in the range of 298–333 K), and CO2 partial pressure (in the range of 8–101 kPa). These experimental results were used to fit the present correlation for K2 (Kent‐Eisenberg model, Austgen model, and Li‐Shen model). It was found that all of the models could represent the CO2 equilibrium solubility in 1DEA2P solution with ADDs for Kent‐Eisenberg model, Austgen model, and Li‐Shen model of 6.3, 7.3, and 12.2%, respectively. A new K2 correlation model, the Liu‐Helei model, was also developed to predict the CO2 equilibrium solubility in 1DEA2P solution with an excellent ADD of 3.4%. In addition, the heat of absorption of CO2 in 1DEA2P solution estimated by using the Gibbs‐Helmholtz equation was found to be ?45.7 ± 3.7 kJ/mol. Information and guidelines about effectively using data for screened solvents is also provided based on the three absorption parameters: CO2 equilibrium solubility, second order reaction constant (k2), and CO2 absorption heat. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4465–4475, 2017  相似文献   

5.
The solubility of CO2 in native potato starch (NPS) and potato starch acetate (SA) at two different temperatures (50°C and 120°C) and various pressures (up to 25 MPa) was determined using a magnetic suspension balance. Within the experimental window, a maximum solubility of 31 mg CO2/gsample for NPS and 79.4 mg CO2/gsample for SA was obtained. The CO2 sorption behavior is highly depending on the temperature and pressure. The solubility data were modeled with the Sanchez Lacombe equation of state (S‐L EOS). The swelling (Sw) values, as predicted using the S‐L EOS, were relatively small and a maximum value of 6.1% was obtained for SA at 25 MPa and 120°C. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

6.
This investigation continues a series of studies evaluating the capability of the recently proposed CP‐PC‐SAFT and sPC‐SAFT of Liang et al. to estimate the thermodynamic properties of aqueous systems in the entirely predictive manner. Similarly to the previously considered systems, CP‐PC‐SAFT remains a realistic estimator of the available data on critical loci, high pressure‐high temperature phase equilibria and volumetric properties also in the cases of non‐polar gases and non‐aromatic hydrocarbons from argon and nitrogen till n‐eicosane and squalene while keeping zero values of binary parameters. Nevertheless, such application of the model poses certain unavoidable compromises on its accuracy. Inter alia, CP‐PC‐SAFT is a particularly inaccurate estimator of the water‐rich liquid phases away from the critical points. sPC‐SAFT predicts these data in a more reliable manner. Moreover, its predictive capability goes beyond the liquid phases and it exhibits a remarkable accuracy in forecasting various phase equilibria below the critical point of water. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

7.
The sorption of ethylene and 1‐hexene and their mixture in three poly(ethylene‐co‐1‐hexene) samples is measured gravimetrically at temperatures 70, 90, and 150°C and pressures 0–30 bar. Gravimetric sorption measurements are supplemented with microscopic observations of swelling of polyethylene particles caused by sorption and the extent of swelling is found to be significant. Experimental data are compared with predictions of PC‐SAFT (perturbed chain—‐statistical associating fluid theory) equation of state. Comparison of sorption data in semicrystalline polymer (measured at 70 and 90°C) and amorphous polymer (at 150°C) demonstrates the constraining effect of semicrystalline structure. Solubilities of penetrants in investigated samples are not observed to depend on the content of 1‐hexene in copolymers. The solubility of the mixture of ethylene and 1‐hexene is smaller than the sum of solubilities of individual components at 70 and 90°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1124–1136, 2006  相似文献   

8.
The gas solubility in 1‐dodecyl‐3‐methylimidazolium [C12MIM] based ionic liquids (ILs) was measured at temperatures (333.2, 353.2, and 373.2) K and pressures up to 60 bar for the first time. The popular UNIFAC‐Lei model was successfully extended to long‐chain imidazolium‐based IL and gas (CO2, CO, and H2) systems. The free volume theory was used to explain the gas solubility and selectivity in imidazolium‐based ILs by calculating the fractional free volume and free volume by the COSMO‐RS model. Furthermore, the excess enthalpy of gas‐IL system was concerned to provide new insights into temperature dependency of gas (CO2, CO, and H2) solubility in ILs. The experimental data, calculation, and theoretical analysis presented in this work are important in gas separations with ILs or supported ionic liquid membranes. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1792–1798, 2017  相似文献   

9.
Foamed non‐Fickian diffusion (FNFD) model for a ternary system was proposed for the first time to regress the desorption data obtained by the gravimetric method. Results showed that FNFD model could accurately describe the diffusion behavior of CO2 and ethanol out of foamed polystyrene (PS) and well predict total solubilities of CO2 and ethanol in foamed PS. Meanwhile, Sanchez–Lacombe equation of state (S–L EoS) was adopted to calculate the respective solubilities (solubility of CO2 in PS or solubility of ethanol in PS) and total solubilities of CO2 and ethanol in PS for CO2‐ethanol‐PS ternary system. Results showed that the total solubility of CO2 and ethanol obtained from S–L EoS agreed well with values obtained by FNFD model. Furthermore, the respective and total solubilities of CO2 and ethanol at 313.15, 338.15, and 343.15 K were calculated by S–L EoS. Results indicated that in the dissolving process, ethanol would be accelerated by CO2 to dissolve into PS, and ethanol would compete with CO2 to dissolve into PS, simultaneously. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46281.  相似文献   

10.
In this work, the equilibrium CO2 solubility in the aqueous tertiary amine, N‐methyl‐4‐piperidinol (MPDL) was measured over a range of temperatures, CO2 partial pressures and amine concentrations. The dissociation constant of the MPDL solution was determined as well. A new thermodynamic model was developed to predict the equilibrium CO2 solubility in the MPDL‐H2O‐CO2 system. This model, equipped with the correction factor (Cf), can give reasonable prediction with an average absolute deviation of 2.0%, and performs better than other models (i.e., KE model, Li‐Shen model, and Hu‐Chakma). The second‐order reaction rate constant (k2) of MPDL and the heat of CO2 absorption (–ΔHabs) into aqueous MPDL solutions were evaluated as well. Based on the comparison with some conventional amines, MPDL revealed a high‐equilibrium CO2 loading, reasonably fast absorption rate when compared with other tertiary amines, and a low energy requirement for regeneration. It may, therefore, be considered to be an alternative solvent for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3395–3403, 2017  相似文献   

11.
In this present work, the CO2 absorption performance of aqueous 1‐diethylamino‐2‐propanol (1DEA2P) solution was studied with respect to CO2 equilibrium solubility, absorption kinetics, and absorption heat. The equilibrium solubility of CO2 in 2M 1DEA2P solution was measured over the temperature range from 298 to 333 K and CO2 partial pressure range from 8 to101 kPa. The absorption kinetics data were developed and analyzed using the base‐catalyzed hydration mechanism and artificial neural network models (radial basis function neural network [RBFNN] and back‐propagation neural network [BPNN] models) with an acceptable absolute average deviation of 10% for base‐catalyzed hydration mechanism, 2.6% for RBFNN model and 1.77% for BPNN model, respectively. The CO2 absorption heat of 1DEA2P was estimated to be ?43.6 kJ/mol. In addition, the ions (1DEA2P, 1DEA2PH+, , CO32?) speciation plots of the 1DEA2P‐CO2‐H2O system were developed to further understand the reaction process of 1DEA2P with CO2. Based on a comparison with conventional amines (e.g., MEA, DEA, MDEA) and alternative amines (i.e., 1DMA2P and 4‐(diethylamino)?2‐butanol [DEAB]), 1DEA2P exhibited good performance with respect to CO2 equilibrium solubility, reaction kinetics, and CO2 absorption heat. Meanwhile, the overall evaluation of 1DEA2P for application in CCS in terms of absorption and desorption is presented, giving helpful information for the screening of these novel amines. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2694–2704, 2017  相似文献   

12.
In supercritical carbon dioxide (CO2) assisted polymer processes the solubility of CO2 in a polymer plays a vital role. The higher the amount of CO2 dissolved in a polymer the higher is the viscosity reduction of the polymer. Solubilities of CO2 in polyester resins based on propoxylated bisphenol (PPB) and ethoxylated bisphenol (PEB) have been measured using a magnetic suspension balance at temperatures ranging from 333 to 420 K and pressures up to 30 MPa. An optical cell has been used to independently determine the swelling of the polymers, which has been incorporated in the buoyancy correction. In both polyester resins, the solubility of CO2 increases with increasing pressure and decreasing temperature as a result of variations in CO2 density. The experimental solubility has been correlated to the Sanchez–Lacombe equation of state. POLYM. ENG. SCI. 46:643–649, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Poly(ethylene‐co‐vinyl acetate) (EVA‐25) and poly(ethylene‐co‐vinyl acetate‐co‐carbon monoxide) (EVACO‐2410) and their blends with EVACO:EVA ratios of 80:20, 60:40, 40:60, and 20:80 were foamed using CO2. These foams are of interest for applications ranging from footwear to medical devices. Foaming experiments were carried out using 1 mm thick melt‐extruded films in CO2 at a range of pressures (100, 200, and 300 bar) and temperatures (30, 40, 50, and 60 °C). Foamability of the polymers was explored both under isothermal and gradient temperature conditions. Foams of EVACO‐2410 displayed high initial expansions followed by postfoaming relaxation and shrinkage while foams generated from EVA‐25 showed more dimensional stability. Blending EVACO‐2410 with EVA‐25 was explored as an approach to reduce postfoaming relaxation and shrinkage. The surfaces of the foamed samples displayed blistering that was linked to CO2 bubble entrapment and coalescence at the surface. Scanning electron micrographs of the foams generated from blends displayed distinct morphologies reflecting whether the sections were representing the machine‐ or cross‐machine direction of extruded films. In going from EVACO‐2410 to EVA‐25, the cell densities ranged from about 106 to 1010 cells/cm3. Foams with low bulk densities of about 0.11 g/cm3 could be generated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45841.  相似文献   

15.
16.
A novel aromatic diamine monomer, 4‐(3,5‐dimethoxyphenyl)‐2,6‐bis(4‐aminophenyl)pyridine (DPAP) was successfully synthesized by 4′‐nitroacetophenone and 3,5‐dimethoxybenzaldehyde as raw material. The structure of DPAP was confirmed by Fourier transform infrared, nuclear magnetic resonance, and mass analysis. A series of polyimides (PIs) were obtained by polycondensation with various dianhydrides via the conventional two‐step method. These PIs showed good solubility in organic solvents. They also presented high thermal stability, the glass transition temperatures (Tg) of polymers were in the range of 325–388 °C, and the temperature at 10% weight loss was in the range of 531–572 °C. Furthermore, these polymers also exhibited outstanding hydrophobicity with the contact angles in the range of 89.1°–93.5°. Moreover, the results of wide‐angle X‐ray diffraction (WAXD) confirmed these polymers showed amorphous structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45827.  相似文献   

17.
An efficient polymer‐based catalytic system of poly(4‐vinylphenol) and tetra‐n‐butylammonium iodide was developed for the synthesis of cyclic carbonates from epoxides and CO2. Owing to the synergistic effects of hydroxyl groups and iodide anions, this commercially available and metal‐free system was highly active for the reaction of various terminal epoxides under environmentally benign conditions, at 25 to 60 °C and atmospheric pressure of CO2, without the use of any organic solvents. The catalyst system can be easily separated by adding ether, and its ability was recovered by treating it with 40% CH3CO2H aq. The recyclability was investigated in detail for three substrates, epichlorohydrin, 1,2‐epoxyhexane, and styrene oxide, using 1H nuclear magnetic resonance analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45189.  相似文献   

18.
Anion functionalized strategy has been proposed for the synthesis of macro‐porous resins [IRA‐900][An] through the neutral reaction of the basic resin [IRA‐900][OH] with the corresponding donors. Combining CO2 adsorption results and FT‐IR, solid‐state 13C NMR characterization as well as quantum chemical calculations, chemical adsorption mechanism was verified and tunable capture of CO2 was realized. Among them, the anion functionalized resin [IRA‐900][Triz] exhibits an extremely high adsorption capacity (4.02 mmol g?1 at 25°C, 0.15 bar), outperforming many other good adsorbents. Finally, we discuss the thermostability and recycling stability of [IRA‐900][Triz], which shows a great potential in the industrial capture of CO2. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3008–3015, 2017  相似文献   

19.
The solutions and the thin films of poly[9,9‐dioctyl‐2,7‐fluorene‐alt‐2,5–(3‐hexyl‐sulfonylthiophene)] (PFSO2T) and its binary blends with other nonconjugated polymers such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and ethylene vinyl acetate copolymer (EVA) can be prepared by different concentrations from a polymer solution. Binary polymer blends can increase the absorbance and photoluminescence intensities in the solid state due to nonconjugated polymers can act as dispersion agents which can reduce the interchain interaction or the aggregation of the conjugated polymers. Photoluminescence intensity of the thin films of fluorescent polymers blending with ethylene vinyl acetate copolymers exhibited six times higher than that of the neat fluorescent polymers. The PFSO2T/EVA binary blends reveal the least extent of optical degradation of around 20% compared to those binary blends in both absorption and emission intensities after the irradiation under the UV‐light for 20 h. The cross‐sectional morphology of fluorescent polymers blending with ethylene vinyl acetate copolymers reveals little aggregation and better phase separation among the other binary polymer blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44969.  相似文献   

20.
Novel hypercrosslinked microporous organic polymers (MOPs) derived from N‐functionalized siloles as basic building units have been designed and synthesized via Friedel–Crafts alkylation reaction. The resulting N‐functional silole‐containing polymer networks exhibit high thermal stabilities and moderate Brunauer–Emmett–Teller surface area ranging from 666 to 1137 m2 g?1. The incorporation of carbazole or triphenylamine moieties into the polymer skeleton increases the number of electron donating basic nitrogen sites in the porous frameworks. Thus, the corresponding polymer PDMCzS shows enhanced CO2 adsorption capacities of 3.23 mmol g?1 at 273 K and 1.13 bar, and higher CO2/N2 selectivity (43.99) at 273 K than the analogous silole‐containing polymers P1–P3. These results demonstrated that the N‐functionalized silole‐containing polymer network is a very promising candidate for potential applications in post‐combustion CO2 capture and sequestration. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45907.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号