首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both epoxy resin and acid‐modified multiwall carbon nanotube (MWCNT) were treated with 3‐isocyanatopropyltriethoxysilane (IPTES). Scanning electron microscopy (SEM) and transmission electronic microscope (TEM) images of the MWCNT/epoxy composites have been investigated. Tensile strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 41% comparing to the neat epoxy. Young's modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 52%. Flexural strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 145% comparing to neat epoxy. Flexural modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 31%. Surface and volume electrical resistance of MWCNT/epoxy composites were decreased with IPTES‐MWCNT content by 2 orders and 6 orders of magnitude, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Multiwalled carbon nanotube (MWCNT)/epoxy composites are prepared, and the characteristics and morphological properties are studied. Scanning electron microscopy microphotographs show that MWCNTs are dispersed on the nanoscale in the epoxy resin. The glass‐transition temperature (Tg) of MWCNT/epoxy composites is dramatically increased with the addition of 0.5 wt % MWCNT. The Tg increases from 167°C for neat epoxy to 189°C for 0.5 wt % CNT/epoxy. The surface resistivity and bulk resistivity are decreased when MWCNT is added to the epoxy resins. The surface resistivity of CNT/epoxy composites decreases from 4.92 × 1012 Ω for neat epoxy to 3.03 × 109 Ω for 1 wt % MWCNT/epoxy. The bulk resistivity decreases from 8.21 × 1016 Ω cm for neat epoxy to 6.72 × 108 Ω cm for 1 wt % MWCNT/epoxy. The dielectric constant increases from 3.5 for neat epoxy to 5.5 for 1 wt % MWCNT/epoxy. However, the coefficient of thermal expansion is not affected when the MWCNT content is less than 0.5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1272–1278, 2007  相似文献   

4.
Multiwall carbon nanotubes (MWCNTs) with liquid‐like behavior at room temperature were prepared with sulfonic acid terminated organosilanes as corona and tertiary amine as canopy. The liquid‐like MWCNT derivative had low viscosity at room temperature (3.89 Pa s at 20°C) and exhibited non‐Newtonian shear‐thinning behavior. The weight fraction of MWCNT in the derivative was 16.72%. The MWCNT derivative showed very good dispersion in organic solvents, such as ethanol and acetone. The liquid‐like MWCNT derivative was incorporated into epoxy matrix to investigate the mechanical performance of the nanocomposites and the distribution of MWCNTs in the matrix. When the liquid‐like MWCNT derivative content was up to 1 wt %, the flexural strength and impact toughness of composites were 12.1 and 124% higher than the pure epoxy matrix, respectively. Transmission electron microscope (TEM) confirmed the very good dispersion of the liquid‐like MWCNT derivative in epoxy matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2217–2224, 2013  相似文献   

5.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Multi‐walled carbon nanotube (MWCNT)/Poly(ethylene terephthalate) (PET) nanowebs were obtained by electrospinning. For uniform dispersion of MWCNTs in PET solution, MWCNTs were functionalized by acid treatment. Introduction of carboxyl groups onto the surface of MWCNTs was examined by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) analysis. MWCNTs were added into 22 wt % PET solution in the ratio of 1, 2, 3 wt % to PET. The morphology of MWCNT/PET nanoweb was observed using field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The nanofiber diameter decreased with increasing MWCNT concentration. The distribution of the nanofiber diameters showed a bi‐modal shape when MWCNTs were added. Thermal and tensile properties of electrospun MWCNT/PET nanowebs were examined using a differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA) and etc. Tensile strength, tensile modulus, thermal stability, and the degree of crystallinity increased with increasing MWCNT concentration. In contrast, elongation at break and cold crystallization temperature showed a contrary tendency. Electric conductivities of the MWCNT/PET nanowebs were in the electrostatic dissipation range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
In this paper, γ‐ray radiation technique was utilized to simply functionalize multi‐walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs (MWCNTs‐Am) was proven and the physicochemical properties of MWCNTs before and after radiation grafting modifications were characterized using FT‐IR, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated that the γ‐ray radiation had the visible effects on the surface properties of MWCNTs. The effects of various functionalized MWCNTs on morphological, thermal, and mechanical properties of an epoxy‐based nanocomposite system were investigated. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy‐based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT‐Am showed 13.0% increase in tensile strength, 20.0% increase in tensile modulus, and 24.1% increase in thermal decomposition temperature. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

9.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Nanoreinforcing fillers have shown outstanding mechanical properties and widely used as reinforcing materials associated to polymeric matrices for high performance applications. In this study, a series of multiwalled carbon nanotubes (MWCNTs)‐, nano‐Al2O3‐, nano‐SiO2‐, and talc‐reinforced epoxy resin adhesives composites were developed. The influence of different types and contents of nanofillers on adhesion, elongation at break, and thermal stability (under air and nitrogen atmospheres) of diglycidyl ether of bisphenol A (DGEBA)/epoxy novolac adhesives was investigated. A simple and effective approach to prepare adhesives with uniform and suitable dispersion of nanofillers into epoxy matrix was found to be mechanical stirring combined with ultrasonication. Transmission electron microscopic and scanning electron microscopic investigations revealed that nanofillers were homogeneously dispersed in epoxy matrix at optimized nanofiller loadings. Adhesion strength was measured by lap shear strength test as a function of nano‐Al2O3 and MWCNTs loadings. The results indicated that the lap shear strength was significantly increased by about 50% and 70% with addition of MWCNTs and nano‐Al2O3 up to a certain level, respectively. The highest lap shear strength was reached at 1.5 wt % of nano‐Al2O3 loading. MWCNTs at all loadings (except 3 wt %) and nano‐Al2O3 have enhanced onset of degradation temperature and char yield of the adhesives. By combined incorporation of 0.75 wt % nano‐Al2O3 and 0.75 wt % MWCNTs into the epoxy novolac/DGEBA blend adhesives a synergistic effect was observed in the thermal stability of the adhesives at high temperatures (800°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40017.  相似文献   

11.
Different amounts of multiwalled carbon tubes (MWCNTs) were incorporated into an epoxy resin based on diglycidyl ether of bisphenol A and both epoxy precursor and composite were cured with 4,4′‐diamino diphenyl sulfone. Transmission and scanning electron microscopy demonstrated that the carbon nanotubes are dispersed well in the epoxy matrix. Differential scanning calorimetry measurements confirmed the decrease in overall cure by the addition of MWCNTs. A decrease in volume shrinkage of the epoxy matrix caused by the addition of MWCNTs was observed by pressure–volume–temperature measurements. Thermomechanical and dynamic mechanical analysis were performed for the MWCNT/epoxy composites, showing that the Tg was slightly affected, whereas the dimensional stability and stiffness are improved by the addition of MWCNTs. Electrical conductivity measurements of the composite samples showed that an insulator to conductor transition takes place between 0.019 and 0.037 wt % MWCNTs. The addition of MWCNTs induces an increase in both impact strength (18%) and fracture toughness (38%) of the epoxy matrix with very low filler content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs), both oxidized and amine functionalized (triethylenetetramine—TETA), have been used to improve the mechanical properties of nanocomposites based on epoxy resin. The TGA and XPS analysis allowed the evaluation of the degree of chemical modification on MWCNTs. Nanocomposites were manufactured by a three‐roll milling process with 0.1, 0.5, and 1.0 wt % of MWCNT–COOH and MWCNT–COTETA. A series of nanocomposites with 5.0 wt % of reactive diluent was also prepared. Tensile and impact tests were conducted to evaluate the effects of the nanofillers and diluent on the mechanical properties of the nanocomposites. The results showed higher gains (258% increase) in the impact strength for nanocomposites manufactured with aminated MWCNTs. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the overall filler distribution, the dispersion of individual nanotubes, and the interface adhesion on the nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42587.  相似文献   

13.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m‐xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol‐A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m‐xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m‐MWNTs. When the content of m‐MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41255.  相似文献   

14.
Multiwalled carbon nanotube (MWCNT)‐welded carbon fibers (CFs) were prepared by a three‐step process, which included polyacrylonitrile (PAN) coating, MWCNT absorption, and heat treatment. The structure of these materials was characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy, and Raman spectroscopy. The MWCNTs were uniformly assembled on the surface of the PAN‐coated CFs and welded by a PAN‐based carbon layer after heat treatment. The contact angle of the MWCNT‐welded CFs in the epoxy resins was 41.70°; this was 22.35% smaller than that of the unsized CFs. The interfacial shear strength (IFSS) of the MWCNT‐welded CF–epoxy composite was 83.15 MPa; this was 28.89% higher than that of the unsized CF–epoxy composite. The increase in the IFSS was attributed to the enhancement of adhesions between the CFs and polymer matrix through the welding of the MWCNTs on the CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45027.  相似文献   

15.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Amino‐functionalization of multiwalled carbon nanotubes (MWCNTs) was carried out by grafting triethylenetetramine (TETA) on the surfaces of MWCNTs through the acid–thionyl chloride way. The amino‐functionalized MWCNTs show improved compatibility with epoxy resin and, as a result, more homogenous dispersion in the matrix. The mechanical, optical, and thermal properties of the amino‐functionalized MWCNT/epoxy composites were also investigated. It was found that introducing the amino‐functionalized MWCNTs into epoxy resin greatly increased the charpy impact strength, glass transition temperature, and initial decomposing temperature of cured epoxy resin. In addition, introducing unfunctionalized MWCNTs into epoxy resin was found greatly depressing the light transmission properties, which would affirmatively confine the application of the MWCNTs/epoxy composites in the future, while much higher light transmittance than that of unfunctionalized MWCNTs/epoxy composites was found for amino‐functionalized MWCNTs/epoxy composites. SEM of the impact cross section and TEM of ultrathin film of the amino‐functionalized MWCNTs/epoxy composites showed that the amino‐functionalized MWCNTs were wetted well by epoxy matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 97–104, 2006  相似文献   

17.
The high compatibility of fluorene‐based polyester (FBP‐HX) as a polymer matrix for multiwalled carbon nanotubes (MWCNTs) is discussed. A low surface resistivity due to the fine dispersion of MWCNTs in FBP‐HX and polycarbonate (PC) is reported. With a solution‐casting method, a percolation threshold with the addition of between 0.5 and 1.0 wt % MWCNTs was observed in the MWCNT/PC and MWCNT/FBP‐HX composites. Because of the coverage of FBP‐HX on the MWCNTs, a higher surface resistivity and a higher percolation ratio of the MWCNT/FBP‐HX composites were achieved compared with the values for the MWCNT/PC composites. In the MWCNT/FBP‐HX composites, MWCNTs covered with FBP‐HX were observed by scanning electronic microscopy. Because of the coverage of FBP‐HX on the MWCNTs, FBP‐HX interfered with the electrical pathway between the MWCNTs. The MWCNTs in FBP‐HX were covered with a 5‐nm layer of FBP‐HX, but the MWCNTs in the MWCNT/PC composites were in their naked state. MWCNT/PC sheets demonstrated the specific Raman absorption of the MWCNTs only with the addition of MWCNTs of 1 wt % or above because of the coverage of the surface of the composite sheet by naked MWCNTs. In contrast, MWCNT/FBP‐HX retained the behavior of the matrix resin until a 3 wt % addition of MWCNTs was reached because of the coverage of MWCNTs by the FBP‐HX resin, induced by its high wettability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A series of polyimide‐based nanocomposites containing polyimide‐grafted multi‐walled carbon nanotubes (PI‐g MWCNTs) and silane‐modified ceramic (aluminium nitride (AlN)) were prepared. The mechanical, thermal and electrical properties of hybrid PI‐g MWCNT/AlN/polyetherimide nanocomposites were investigated. After polyimide grafting modification, the PI‐g MWCNTs showed good dispersion and wettability in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The utilization of the hybrid filler was found to be effective in increasing the thermal conductivity of the composites due to the enhanced connectivity due to the high‐aspect‐ratio MWCNT filler. The use of spherical AlN filler and PI‐g MWCNT filler resulted in composite materials with enhanced thermal conductivity and low coefficient of thermal expansion. Results indicated that the hybrid PI‐g MWCNT and AlN fillers incorporated into the polyetherimide matrix enhanced significantly the thermal stability, thermal conductivity and mechanical properties of the matrix. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
Nanocomposites using EPON 824 as their matrix were exposed to pulse laser at 532 nm for various time intervals. The developed nanomaterials used for this study were manufactured using EPON 824 with multiwalled carbon nanotubes (MWCNTs) at a loading rate of 0.15% by weight and nanoclays at a loading rate of 2% by weight as reinforcements. The effect of laser irradiation on polymer composites has been investigated. The degradation mechanism for the epoxy was of a laser induced burning nature. Of all specimens tested, the ultimate strength of the MWCNT‐reinforced specimens decreased the most as a function of radiation time; the nanoclay‐reinforced epoxy retained the most strength after 2 min of laser radiation. In addition, the threshold fluence for decomposition indicated that less energy was required to initiate decomposition in the MWCNT‐reinforced epoxy than in the nanoclay‐reinforced epoxy. This can be attributed to the high thermal conductivity of the carbon nanotubes. Measurement of surface damage in the material was observed via electron microscopy. Fourier transform infrared spectroscopy was used to investigate changes to the molecular structure as a function of exposure time. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Multi-walled carbon nanotubes (MWCNTs) were used in the low-viscosity, thermosetting polyester epoxy/amine resin LY-5052 with high temperature resistance to fabricate MWCNT/epoxy composites. Tensile tests of the specimens were carried out to obtain mechanical properties of MWCNT/epoxy composites for various weight-percents (wt.%) of MWCNTs. Experimental results show that the Young’s modulus and the tensile strength of the composites can be significantly improved by adding a small percentage of MWCNT. A new form of the rule of mixtures, including an exponential shape function, length efficiency parameter, orientation efficiency factor and a waviness parameter, is proposed for a more accurate prediction of the mechanical properties of MWCNT-reinforced epoxy composites, for both low and high wt.% ranges. In order to verify the suitability of the model, the ensuing predictions are compared to the available experimental data in the literature. Results demonstrate a good predictability of the modified form over a wide range of tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号