首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports a facile one‐step methodology to increase fire resistance properties of cotton fabric. The flame‐retardant coating for cotton fabric was synthesized with methyltriethoxysilane and organophosphates (M102B) through an ultrasound irradiation process. The coating structure and surface morphology of uncoated and coated fabrics were investigated by Fourier transform infrared spectroscopy and scanning electron microscope, respectively. The flame‐retardant properties, bending modulus, air permeability and thermal stability were studied by vertical burning test, cantilever method, air permeability test and thermogravimetric analysis (TGA). As a result, the cotton fabric coated with 29.2% (mass increased) of flame‐retardant coating was able to balance the flame retardant property and wearing comfort of the fabrics. The TGA results showed that the residue char of cotton was greatly enhanced after treatment with the coating, which has a high char forming effect on cellulose during testing. Furthermore, flame‐retardant property of coated fabrics did not change significantly after 10 washing cycles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45114.  相似文献   

2.
Poly(diphenolic acid‐phenyl phosphate) [poly(DPA‐PDCP)], obtained from diphenolic acid (a well‐known biomass chemical), was used together with polyethylenimine (PEI) to construct a flame retardant surface coating for ramie fabric using layer‐by‐layer self‐assembly. Attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and scanning electron microscope (SEM) equipped with an energy dispersive X‐ray spectrometer (EDX) were used to confirm the successful formation of layer by layer assembly. Assessment of the thermal and flammability properties for poly(DPA‐PDCP)/PEI‐coated ramie fabrics showed that the thermal stability, flame retardancy, and residual char were enhanced as the concentration of poly(DPA‐PDCP) and the BL number in the LbL process increased as well as the treatment of KH550 was applied. SEM and EDX analysis of the char residue confirmed further the intumescent flame retardant mechanism. This work demonstrated the great potentials of poly(DPA‐PDCP)/PEI flame retardant nanocoating constructed by LbL assembly method in the application of ramie fabric. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44795.  相似文献   

3.
In the present paper, a novel biomass flame retardant based on alginic acid was synthesized through chemical combination with a reactive P–Si compound. Compared with alginates, the modified alginate showed obviously increased thermal stability and water resisting property, as well as better compatibility with epoxy resin, which can satisfy the requirements of a flame‐retardant additive in the polymer. The flame‐retardant properties were evaluated by vertical burning tests, limiting oxygen index, and microscale combustion calorimetry. Due to the self‐charring capacity of alginate combined with the charring catalyst from P and the charring reinforcer from Si, the modified alginate exhibited much better flame retardancy, taking advantage of the formation of a more continuous, denser, and strengthened char layer than either individual alginate or P–Si flame retardant. The corresponding flame‐retardant mechanisms were investigated and discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45552.  相似文献   

4.
The halogen‐free flame‐retardant polystyrene (PS) composites containing expandable graphite (EG) and melamine phosphate (MP) were prepared successfully, and the thermal degradation behavior and fire performance were investigated by various measurements. The experimental results show that EG and MP have a synergistic effect on flame‐retardant PS, which can catalyze the char formation from PS. PS/MP/EG(1:2) composite achieves limited oxygen index value of 28.0% and UL‐94V‐0 (1.6 mm) rate. The mass retention at high temperature (800 °C) under air atmosphere of PS composites have a large increase by the introduction of EG and MP. Microscale combustion calorimeter (MCC) and cone calorimetric analysis indicate that the heat release rate and total heat release of PS/MP/EG(1:2) composite are reduced significantly, because the formed thick char layer has a notable barrier property. The study on the char residue of PS/MP/EG(1:2) composite by X‐ray photoelectron spectroscopy (XPS) analysis confirms the formation of the stable structures containing P? O? C. Furthermore, the mechanical properties of PS composites were also investigated; compared with neat PS, the addition of flame retardants leads to the decrease of tensile strength and flexural strength, but the impact strength of PS/MP/EG(1:2) has increased by 44.2%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45474.  相似文献   

5.
Layer by layer (LBL) assembly technique was used to deposit multilayer coating containing phosphorus-nitrogen onto the surface of fibers to improve the flame retardancy of polyester-cotton (PET-COT) blended fabric. Ellipsometer results confirmed that polyallylamine hydrochloride (PAH), melamine (MEL), and ammonium polyphosphate (APP) grew linearly on silicon wafer during the LbL process. The LOI value of coated PET-COT fabric was increased from 20.8% of pristine fabric to 28.4% by the presence of about 9 wt% coating. Besides, this intumescent nanocoated PET-COT fabric was self-distinguished during the vertical burning test. Thermogravimetric analysis under both nitrogen and air atmosphere revealed that the initial degradation temperature of the coated sample was decreased and the char residue amount was significantly improved during combustion. The flame resistance performance evaluation by pyrolysis combustion flow calorimeter indicated that this coating effectively reduced the peak heat release rate of PET-COT matrix. The scanning electron micrographs of char residue demonstrated that the char formation in the condensed phase and free radical caption in the gas phase was responsible for the improved flame retardancy. It is suggested this unique facile coating technology with low cycles and high efficiency has great potential to produce commercially available flame retardant polymeric-cotton blend fabrics.  相似文献   

6.
The aim of this work is to develop a halogen‐free thermoplastic polyurethane (TPU) composite with significantly improved fire performance by using a highly commercial phosphorous–nitrogen containing intumescent flame retardant (P–N IFR). Based on the characterizations of thermogravimetric analysis and in situ Fourier transform infrared spectra, P–N IFR powder was proved a desired flame retardant for TPU in theory and the thermal degradation property of PU/PNIFR composites at elevated temperatures was investigated as well. Fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphologies. Results showed that the addition of P–N IFR promotes the formation of char residues which were covered on the surface of polymer composites resulting in the improvement of thermal stability and flame retardancy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39772.  相似文献   

7.
The phosphorus‐containing acrylate monomer, 2‐acryloyloxyethyl diethyl phosphate (ADEP), was synthesized and applied to cotton fabric by using admicellar polymerization. Sodium dodecylbenzene sulfonate was used as the anionic surfactant. The film of polymerized monomer (PADEP) formed on the cotton surface was characterized by FTIR‐ATR spectroscopy and SEM. Thermal and flame retardant properties of PADEP‐coated cotton were investigated by TGA and flammability tests. Results showed that PADEP polymer film was successfully formed on the cotton fabric. The TGA and DTG analyses showed that the phosphorus‐containing PADEP lowered the decomposition temperature of the treated fabric resulting in a higher char yield than in the case of untreated cotton. The flammability tests showed that the treated cotton had much improved flame retardancy property after the treatment. The treated fabric also retained its good pliability and soft touch with good air permeability. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
以含硅和硼元素的物质改性六氯环三磷腈,制备环三磷腈衍生物,通过傅里叶变换红外光谱和核磁共振等方法确定其结构。将衍生物以熔融共混的方法应用于聚对苯二甲酸乙二醇酯(PET)的阻燃研究,通过极限氧指数和垂直燃烧测试判定其在PET中的阻燃效果,协同燃烧后炭渣的表面形貌探讨其阻燃机理。结果表明,在阻燃剂的添加量仅为1%时,材料的极限氧指数能达30%以上,UL94可达V-0级的水平;材料燃烧后材料的内表面是多孔型的而外表面是连续致密的,为改善材料的热性质和降低可燃气体的扩散提供了一层屏障。  相似文献   

9.
This paper is aimed to illustrate the structure and thermal property of intumescent char produced by flame‐retardant polymers containing expandable graphite (EG). For this purpose, high‐impact polystyrene (HIPS) flame retarded by EG individually or in combination with microencapsulated red phosphorus (MRP) was prepared. The results indicate that the intumescent char from HIPS/EG/MRP composite, which contains a small amount of phosphorus element and more oxygen element, is much more compact and continuous than that from HIPS/EG composite with identical loading of flame retardant due to binding effect of phosphoric acid and its derivatives. The intumescent char produced by HIPS/EG/MRP composite exhibits much enhanced thermal and thermo‐oxidative stability as well as thermal‐insulating effect, which can withstand destruction of heat and oxygen effectively and thus provide a good fire‐proof barrier. The temperature beneath this intumescent char is decreased significantly in case of action by flame. By comparison, the porous and loose intumescent char generated by HIPS/EG composite has poor thermo‐oxidative endurance, and most of it can be consumed in air at high temperature without effective protection for the polymer. This has resulted in remarkable increase in flame retardancy of the HIPS/EG/MRP composite.  相似文献   

10.
利用TG—DTG方法,研究了不同配比阻燃PET在N2气氛下的热降解行为。结果发现,阻燃则能显著减缓PET的分解速率,提高PET分解后形成的残余物的稳定性,使化学成炭质量得到改善;阻燃刑的加入使体系的成炭化学反应过程提前,显示了较好的协效作用,有利于残余物的稳定,提高其阻燃性能。  相似文献   

11.
The present work demonstrates a surface pretreatment of reducing assembly layers for flame retardant modification of ramie fabric used by layer-by-layer (LbL) assembly. In order to achieve this goal, low-temperature plasma (LTP) pretreatment was chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscope (SEM) were used to confirm the effect of LTP pretreatment on polyethylenimine/ammonium polyphosphate (PEI/APP) flame retardant coating constructed on the surface of ramie fabric using LbL assembly. The thermal property and flame retardancy of PEI/APP coated ramie fabrics were analyzed by TG, LOI, UL94 vertical burning, and cone calorimeter tests. The results indicated that the decomposition rate of ramie fabrics was reduced and the char forming ability at high temperature was improved by PEI/APP coating on the ramie surface. Its LOI increased markedly to 30.6% and ramie fabric achieved self-extinguishing effect. Meanwhile, LTP-O2-(PEI/APP)20 ramie fabric exhibited the low flammability and high fire safety. It was proved that LTP pretreatment under oxygen atmosphere could endow ramie fabric with better flame retardancy due to more PEI/APP adsorbed on its surface. These findings have significant implications for the application of LTP pretreatment to flame retardant modification of ramie fabric by LbL assembly.  相似文献   

12.
The study deals with chemical and flame retardant (FR) treatment of flax fabric. Sheets of flax fabric were subjected to chemical treatments using NaOH and silane coupling agents. A phosphate‐based flame retardant (DAP) was also applied to improve the flammability of the fabric. The effects of the chemical treatments and FR treatments on flax fabric were investigated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and vertical flame resistance test. Aging studies were carried out by exposing the samples in an environmental chamber at specified conditions for two weeks. The mechanical properties of the fabric, before and after environmental aging, were investigated. Flammability of flax fabric was improved after FR treatment. Thermal studies revealed a shift of decomposition temperature to lower temperatures and an increase in char residue after FR treatment. Despite treatment of the fabric with NaOH and silane, the tensile strength of FR‐treated flax fabric declined by more than 90% after aging for two weeks at 90 °C and 50% RH. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44175.  相似文献   

13.
Microencapsulated aluminum hypophosphite (MFAHP) with a shell of melamine–formaldehyde resin (MF) was prepared via in situ condensation polymerization. The presence of MFAHP increased the water resistance of flame‐retarded (FR) acrylonitrile–butadiene–styrene (ABS) composites after hot water treatment. The mechanical properties indicate that the tensile strength and flexural strength of the FR ABS/MFAHP composites is enhanced with the incorporation of MFAHP. Cone calorimeter test results demonstrated that the peak heat release rate, total heat release, and total smoke release values of the ABS/MFAHP composites were significantly decreased. Digital photos and scanning electron microscopy images of the residues of ABS/25 wt % MFAHP2 composites exhibited compact char layer structures, with many cobweb‐like nanoparticle arrangements formed on the surface by the burning process. The investigation of flame‐retardant mechanisms of ABS/MFAHP composites using infrared spectroscopy and energy‐dispersive X‐ray spectroscopy indicated that both the formation of char residue in the condensed phase and the release of inert gases by the MF shell in the gas phase led to the formation of compact and stable char layers containing carbon/pyrophosphate and aluminum polyphosphate, consequently leading to the good flame‐retardant performance of MFAHP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45008.  相似文献   

14.
A phosphorus/silicon flame retardant, MVC‐DOPO, was synthesized from 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,4,6,8‐tetra‐methyl‐2,4,6,8‐tetra‐vinyl‐cyclo‐tetrasiloxane (MVC) via addition reaction. Its flame‐retardant effect on polycarbonate (PC) was investigated. The phosphorus/silicon flame retardant increased the limited oxygen index and UL‐94 rating and reduced the heat release rate and total heat release of DOPO‐MVC/PC composites during combustion, indicating the excellent flame‐retardant effect of MVC‐DOPO on PC. MVC‐DOPO inhibited the burning intensity of PC material in the gaseous phase and promoted the formation of a more viscous residue in the condensed phase. Through releasing phosphorus‐containing pieces and phenoxy radicals from the phosphaphenanthrene group, MVC‐DOPO quenched the combustion chain reaction in the gaseous phase; through promoting formation of a more viscous residue and a dense char layer from the main actions of the cyclotetrasiloxane group, MVC‐DOPO reduced fuel release and generated a barrier effect in the condensed phase. Hence, MVC‐DOPO effectively exerted a flame‐retardant effect on PC material in both the gaseous and condensed phases during combustion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45815.  相似文献   

15.
Two flame retardants, aluminium poly‐hexamethylenephosphinate (APHP) and bisphenol‐A bis(diphenyl phosphate) (BDP), were incorporated into diglycidyl ether of bisphenol A (DGEBA) thermoset with 4,4′‐diaminodiphenyl sulfone (DDS) as curing agent, and then the synergistic flame‐retardant behaviors of the cured thermosets were investigated. Compared with thermosets containing 10 wt% APHP and 10 wt% BDP alone, the sample with 3.3 wt% APHP and 6.7 wt% BDP (3.3%APHP/6.7%BDP/EP; EP is DGEBA/DDS) possessed a better flame‐retardant effect since its limited oxygen index reached 35.0% and in the UL94 test it passed the V‐0 rating. The cone calorimeter test revealed that the 3.3%APHP/6.7%BDP/EP sample generated less gaseous fragments and more smoke particles instead of fuels and verified that APHP and BDP exhibited an outstanding synergistic effect on the barrier effect. Macroscopic digital photos and micrographs from scanning electron microscopy further disclose that BDP facilitated the formation of a flexible film covering holes in the residue. The flexible film was combined with aluminium phosphate particles which were produced by decomposed APHP, thereby forming a char layer with increased barrier effect. The synergistic barrier effect from APHP and BDP imposed a better flame‐retardant performance for epoxy thermosets. © 2017 Society of Chemical Industry  相似文献   

16.
Sulfonated melamine‐formaldehyde (SMF) resin was successfully synthesized with a mixture of formaldehyde, melamine, and NaHSO3 in an aqueous solution. Then the SMF was used as the blowing agent to combine with chitosan and phytic acid for fabricating the intumescent flame retardant coating on the surface of the cotton fabric by layer‐by‐layer (LbL) self‐assembled technology. As characterized by X‐ray photoelectron spectroscopy, scanning electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy, the (chitosan/SMF + phytic acid)n coating was successfully deposited on the surfaces of cotton fibers. Thermogravimetric analysis results exhibited that the thermal stabilities of coated cotton fabrics under nitrogen and air atmosphere were enhanced at temperatures ranging from 400 to 700 °C compared with pure cotton fabric. At 700 °C, the char residues of cotton‐5BL and cotton‐10BL under a nitrogen atmosphere were improved 25.9 and 32 wt % than that of pure cotton fabric, respectively. In the vertical flame test, the self‐extinguishing could be obtained for the cotton‐10BL sample. This work first utilized SMF as negative polyelectrolyte to fabricate intumescent flame retardant coating by LbL self‐assembled technology on cotton fabric to strengthen its thermal stability and flame resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46583.  相似文献   

17.
A series of flame‐retardant rigid polyurethane foams (RPUFs) containing nonreactive phosphonate (5‐ethyl‐2‐methyl‐1,3,2‐dioxaphosphorinan‐5‐yl) methyl dimethyl phosphonate P‐oxide (EMD) and expandable graphite (EG) were prepared by water blown. The flame‐retardant properties and mechanism of EMD/EG on RPUFs were systematically investigated. The EMD/EG system effectively increased the limiting oxygen index (LOI) value and decreased the values of total heat release (THR), av‐effective heat of combustion (EHC), pk‐heat release rate (HRR), total smoke release (TSR) of RPUFs. The impact values of LOI, THR, and av‐EHC resulted by EMD/EG system are nearly equal to the sum of the impact values by EMD and EG individually in RPUFs, which implies the addition flame‐retardant effect from EMD and EG. EMD alone exerted excellent gas‐phase flame‐retardant effect by releasing PO fragments with quenching effect. The firm residue produced by EMD combined well with the loose and worm‐like expanded graphite from EG further to form compact and expanded char layer, which brought excellent barrier effect and filtration effect to matrix. That's why pk‐HRR and TSR values of RPUF reduced. Depending on the simultaneous actions of EMD/EG system in gas phase and condensed phase during combustion, the flame‐retardant effects from nonreactive phosphonate and EG on RPUFs were added together. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45960.  相似文献   

18.
A “trinity” reactive flame retardant (TRFR) was successfully synthesized from pentaerythritol, phosphorus oxychloride (POC), and p-aminobenzoic acid in two steps. The flame retardant polyamide 66 (PA66) was prepared by polymerizing TRFR with PA66 salt; the structural changes during the heating process, the morphology, and composition after combustion of flame retardant PA66 were analyzed. Fourier transform infrared, scanning electron microscopy, and Raman analysis results showed that the TRFR structure on flame retardant PA66 decomposed at the temperature of 25–550 °C, forming compounds containing phosphorus, carbon, and nitrogen, respectively. These compounds promoted the dehydration of the combustion surface to form char, increased the char formation rate, and produced nonflammable gases, resulting in a dense, porous, noncombustible carbon layer. The carbon layer may isolate oxygen and heat, thereby preventing the polymer from sustainability of combustion. When the TRFR salt content was 3%, TRFR flame retardant PA66 has excellent flame retardancy with limited oxygen index value of 29 and UL94 of V-0 rating. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47488.  相似文献   

19.
To examine the feasibility of developing flame‐retardant‐textile coated fabric systems with electrospun polyamide/boric acid nanocomposites, fiber webs coated on cotton substrates were developed to impart‐fire retardant properties. The morphology of the polyamide/boric acid nanocomposite fibers was examined with scanning electron microscopy. The flame‐retardant properties of coated fabric systems with different nanoparticle contents were assessed. The flame retardancy of the boric acid coated fabric systems was evaluated quantitatively with a flammability test apparatus fabricated on the basis of Consumer Product Safety Commission 16 Code of Federal Regulations part 1610 standard and also by thermogravimetric analysis. The 0.05 wt % boric acid nanocomposite fiber web coated on pure cotton fabric exhibited an increment in flame‐spreading time of greater than 80%, and this indicated excellent fire protection. Also, the coated fabric systems with 0.05% boric acid nanocomposite fiber webs exhibited a distinct shift in the peak value in the thermal degradation profile and a 75% increase in char formation in the thermooxidative degradation profile, as indicated by the results of thermogravimetric analysis. The results show the feasibility of successfully imparting flame‐retardant properties to cotton fabrics through the electrospinning of the polymer material with boric acid nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Pentaerythritol phosphate melamine salt (PPMS) as a single‐molecule intumescent fire retardant was synthesized and characterized. The influence of the PPMS content on the combustion and thermal decomposition processes of intumescent‐flame‐retardant (IFR) ethylene–vinyl acetate copolymer (EVA) composites was studied by limiting oxygen index (LOI) measurement, UL 94 rating testing, cone calorimetry, thermogravimetric analysis, and scanning electron microscopy. The LOI and UL 94 rating results illustrate that PPMS used in EVA improved the flame retardancy of the EVA composites. The cone calorimetry test results show that the addition of PPMS significantly decreased the heat‐release rate, total heat release, and smoke‐production rate and enhanced the residual char fire performance of the EVA composites. The IFR–EVA3 composite showed the lowest heat‐release and smoke‐production rates and the highest char residue; this means that the IFR–EVA3 composite had the best flame retardancy. The thermogravimetry results show that the IFR–EVA composites had more residual char than pure EVA; the char residue yield increased with increasing PPMS content. The analysis results for the char residue structures also illustrated that the addition of PPMS into the EVA resin helped to enhance the fire properties of the char layer and improve the flame retardancy of the EVA composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42148.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号