首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this study, the compounding modifier poly(ethylene glycol)/halloysite nanotubes (PEG/HNTs) was prepared by supersonic vibration and dynamic vacuuming. A series of poly(lactic acid) (PLA)/PEG and PLA/PEG/HNT composites were fabricated using a twin-screw extruder. Fourier transform infrared spectroscopy indicated that the hybrid between PEG and HNTs had no evident chemical interaction via supersonic vibration and dynamic vacuuming. The dispersed morphology of the compounding modifier in the PLA matrix was tested by high-resolution scanning electronic microscopy and transmission electron microscopy. The results showed that the low content of PEG/HNTs presented a good dispersion morphology. The binding energy of the PLA-based composites was studied through contact angle measurements. The results showed that PEG and PEG/HNTs can decrease the water contact angle of PLA, and that the binding energy between PEG and HNTs is higher than that of PLA/HNTs, which leads to more location of HNTs in the PEG phase. The crystallization behavior of PLA-based composites was examined by wide-angle X-ray diffraction and differential scanning calorimetry. The results suggested that the addition of PEG and PEG/HNTs effectively enhanced the crystallization of PLA and that the diffraction peak intensity of the PLA-based composites reached a maximum when the content of PEG/HNTs was 1.2 wt %. The spherulite morphology indicated that the addition of PEG resulted in perfect spherulites. The mechanical properties of PLA-based composites were analyzed with a universal testing machine and impact tester, which confirmed that the tensile strength and impact strength of the PLA-based composites increased slightly when the content of the PEG/HNT modifier was 1.2 wt %, while the tensile modulus of the PLA-based composites increased distinctly. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47385.  相似文献   

2.
The bamboo fiber (BF)-reinforced polylactic acid (PLA) composites were prepared using the twin-screw extruder and injection molding. Thermal gravimetric analyzer results indicated the thermal stability of BF/PLA composites decreased with increasing BF content. Differential scanning calorimeter and X-ray diffraction curves showed that BF played a role as a nucleating agent, but the crystallinity of composite materials decreased with the increasing BF content. The melt flow rate of composites reduced with the increase in BF content, resulting in a poorer processing property. The processability of the composites was improved with the addition of high molecular polyethylene glycol (PEG). Mechanics performance test showed that tensile strength and bending strength of composites increased at low loading with the BF content increased then decreased when the loading continued to increase. The tensile strength of the composite materials reached 65.46 MPa when alkali-treated BF (ABF) content was 20 wt %. The flexural strength of the composites reached 97.94 MPa when ABF content was 10 wt %. Impact performance has also been improved. PEG-20000 was the best plasticizer among the PEG-6000,PEG-10000, and PEG-20000. When the component of PEG was 10 wt %, the elongation increased by 56%. The scanning electron microscopy (SEM) result showed that the fracture of the composites was smooth, most ABF were wrapped in matrix and distribution of ABF in PLA matrix was more uniform. It means that interfacial compatibility of bamboo fiber and PLA improved after BF modified by alkali. High molecular weight PEG enhance melt flow ability of polymer, result in fibers were further enclosed in the PLA matrix and increase properties of composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47709.  相似文献   

3.
Bio‐based laminate composites, consisting of alternatively stacked poly(lactic acid) (PLA) sheet and randomly oriented areca fiber mat, were processed via film stacking technique (FST). FST was chosen as it is a commercially viable, low energy‐intensive process for fabricating fiber‐reinforced composite, thereby advocating environmental sustainability. Laminate composites exhibited mechanical strength of 6.5 MPa at 16 wt % fiber loading. Crystallinity of as‐received PLA sheets was found to be 26% due to the presence of ~30 wt % inorganic filler, and showed further enhancement to 50% upon the addition of 22 wt % areca fiber. Dynamic mechanical analysis showed higher glass transition temperature (83 °C) for PLA sheets, mainly due to the presence of higher filler content. This work demonstrates the use of bio‐based laminate composite processed at the lowest possible temperatures as viable alternatives to thermoplastic polyolefins in automobiles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45795.  相似文献   

4.
In this study, we prepared poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG)/sodium chloride (NaCl) blends by melt blending with a triple‐screw dynamic extruder. The effects of PEG on the thermal property, mechanical property, and morphology of blends were investigated in detail. It was found that the incorporation of PEG and NaCl significantly improved the crystallization rate, elongation at break, surface adhesion, and reduced viscoelasticity of PLA. The blends were further batch‐foamed at different temperatures with supercritical carbon dioxide to study the foaming properties. The results of PLA/PEG/NaCl (50 : 10 : 40 wt %) composites after foaming and particle leaching revealed that an interconnected bimodal porous scaffold with the highest porosity of 89% could be achieved. Furthermore, the addition of PEG can significantly reduce the water contact angle so as to enhance the wetting ability of the scaffolds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41181.  相似文献   

5.
Nanocrystalline cellulose (NCC) reinforced poly(caprolactone) (PCL) composites were prepared by compression molding. The NCC content varied from 2 to 10% by weight. NCC played a significant role in improving the mechanical properties of PCL. The addition of 5 wt % NCC caused a 62% improvement of the tensile strength (TS) value of PCL films. Similarly, tensile modulus (TM) values were also improved by NCC reinforcement but elongation at break (Eb) values decreased montonically with NCC content. The water vapor permeability (WVP) of PCL was 1.51 g·mm/m2·day·kPa, whereas PCL films containing 5 wt % NCC showed a WVP of 1.22 g·mm/m2·day·kPa. The oxygen transmission rate (OTR) and carbon dioxide transmission rate (CO2TR) of PCL decreased by 19 and 17%, respectively, with 5 wt % NCC incorporation. It was found that the mechanical and barrier properties of both PCL and PCL‐NCC composites further improved with 10 kGy gamma irradiation treatment. The combination of NCC and radiation significantly increased the TS, TM, and Eb (by 156, 123, and 80%, respectively, compared to untreated PCL). The WVP, OTR, and CO2TR decreased by 25–35% with respect to untreated PCL. The surface and interface morphologies of the PCL‐NCC composites were studied by scanning electron microscopy and suggested homogeneous distribution of NCC within the PCL matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Polylactide (PLA)/polyurethane (PU) composites were prepared by reactive blending method with in situ formation of PU particles via the reaction between polyester polyol (PPG) and toluene‐2,4‐diisocyanate (TDI). The interfacial compatibility and adhesion between the PLA and PU phases were greatly improved by the reaction of the terminal hydroxyl groups of PLA and N?C?O groups of TDI forming graft copolymer, as confirmed by FTIR spectroscopy. The elongation at break and notch impact strength of PLA/PU composites increased considerably with increasing PU content, and the tensile strength of PLA/PU composites decreased slightly compared with that of pure PLA. Upon addition of 12 wt % PU, the elongation at break and notch impact strength increased to 175.17% and 10.96 kJ/m2, respectively, about 27 times and 5.4 times greater than the corresponding values for the pure PLA. The tensile strength decreased only slightly to 48.65 MPa. The excellent interfacial adhesion, the dispersed PU elastomeric particles acting as stress concentration areas, and the triggering of large matrix shear yield as well as many fibrils by internal cavitation were the main mechanical toughening mechanisms. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44383.  相似文献   

7.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

8.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
Fly ash, inexpensive and not eco‐friendly material, is the residue from the coal burning in thermal power stations. If ways can be found to use it, it will facilitate applications for the ash materials and simultaneously reduce the pollution. In this study, silane‐grafted ultrafine fly ash (S‐UFA) was used as a reinforcing filler in poly(lactic acid) (PLA) to prepare a series of PLA/S‐UFA composites. The tensile strength of PLA/S‐UFA composites increases with the increase of S‐UFA content when less than 20 wt %; after a loading fraction greater than 30 wt %, the tensile strength of the composites decreases with the increasing S‐UFA weight fraction. The morphology of PLA/S‐UFA composites was observed by scanning electron microscope (SEM). X‐ray diffraction (XRD) analysis was applied to investigate the crystal structure of S‐UFA and the composites. The thermal properties of these composites were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The TGA results showed that the thermal stability of PLA/S‐UFA composites slightly decreased with the increasing S‐UFA loading fraction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43716.  相似文献   

10.
Polypropylene (PP)/nano‐crystalline cellulose (NCC) composites and foams were produced through extrusion compounding combined with injection molding. From the samples produced, a complete morphological, physical, and mechanical analysis was performed to study the effect of NCC concentration (0–5wt %), foaming agent content (0 to 2wt %) and mold temperature (30°C and 80°C). NCC was very effective to reduce cell size (42–71%) and increase cell density (5–37 times) of the foams, while slightly increasing the overall density (2–7%). The results showed that NCC addition increased the specific tensile modulus (15–22%), specific tensile strength (1–14%) and specific flexural modulus (13–26%) of PP, but decreased specific impact strength (10–20%) and specific elongation at break (50–96%). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42845.  相似文献   

11.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

12.
In moisture wicking fabrics, fibers with hydrophilic surfaces that are also non‐water soluble are desirable. In poly(lactic acid), PLA, fibers it is expected that the addition of poly(ethylene glycol), PEG, will monotonically increase their wicking rates. In this paper, phase separation was used to create biocompatible, biodegradable, hydrophilic yet non‐water soluble fibers by electrospinning PLA with PEG and PLA‐b‐PEG copolymers. By tuning the thermoelectric parameters of the apparatus, and the chemical properties of the dopes, the amount of PEG in the fibers was improved over prior work; concentration increased by 60% (by weight, wt %) to 16 wt % in the PLA fiber. Instead of the expected increasing wicking rates with PEG concentration, there is a peak at 12 wt %; at greater concentrations, wicking decreases due to PEG crystallization within the PLA (verified via DSC). At 12 wt % PEG from copolymers, the nanofabric's wettability increases to 1300% its original weight. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41030.  相似文献   

13.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   

14.
Poly(l ‐lactic acid) (PLA) is now a very attractive polymer for food packaging applications. In this study, PLA/poly(trimethylene carbonate) (PTMC)/talc composite films were prepared by solvent casting. The influence of the talc loading (0, 1, 2, and 3 wt %) on the phase morphology of the PLA/PTMC/talc composites and the improvement in the resulting properties are reported in this article. The scanning electron microscopy images of the composite films demonstrated good compatibility between the PLA and PTMC, whereas talc was not thoroughly distributed in the PLA matrix at talc contents exceeding 3 wt %. The tensile strength and elongation at break of the composite films significantly improved (p < 0.05). On the contrary, the water vapor permeability and oxygen properties of the composite films decreased by 24.7 and 39.2%, respectively, at the 2 wt % talc loading. Differential scanning calorimetry showed that the crystallinity of the PLA phase increased with the presence of talc filler in the PLA/PTMC/talc composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40016.  相似文献   

15.
Under conditions of shear deformations, low-density polyethylene (LDPE) and polylactide (PLA) composites are obtained in rotor disperser. The production of these composites allows one to use polymers derived from natural raw and to reduce the cost of the materials on their base. The addition of rigid PLA leads to increase in elastic modulus from 200 for LDPE to 1190 for LDPE–PLA (50:50 wt %) composites and in tensile strength from 13.3 for LDPE to 17.8 for LDPE–PLA. By differential scanning calorimetry method, it is shown that LDPE and PLA are incompatible. Using X-ray diffraction analysis, it is found that degree of crystallinity of composites decreases from 46.1 at 50:50 wt % to 36.9 at 80:20 wt % component ratios with the rise in LDPE content. Tests on fungus resistance show that the composites containing 50 wt % PLA are more resistant than the composites containing 30 wt % PLA. First by gel-permeation chromatography method, it is shown that composite degradation after exposure in soil is accompanied by the PLA chain scission and depolymerization with formation of monomers and dimers (M w of PLA decreases from 118,860 to 80,100). The obtained composites can be applied as packaging materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47598.  相似文献   

16.
Four series of polylactide (PLA) based composite films containing horizontally aligned few layer graphene (FLG) flakes of high aspect ratio and adsorbed albumin are prepared. The mechanical and thermal properties varies with percentage, dispersion degree and size of FLG flakes. Great improvement up to 290% and 360% of tensile modulus and strength respectively were obtained for the composite containing high lateral size of FLG at 0.17% wt, and up to 60% and 80% for the composite with very well dispersed 0.02% wt FLG. The composites of PLA and PEG-PLLA containing very well dispersed FLG flakes at 0.07% wt are ductile showing enhancement of elongation at break up to respectively 80% and 88%. Relatively high electrical conductivity, 5 × 10−3 S/cm, is measured for PLA film charged with 3% of FLG.  相似文献   

17.
This study investigates the effect of nanocrystalline cellulose (NCC) and polyethylene glycol (PEG) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) bio-nanocomposites compared with that of neat PLA, under specific environmental condition, namely at 37°C in a pH 7.4 phosphate buffer medium for a time period up to 60 days. The water absorption, mass loss, molecular weight, and the morphologies of nanocomposites before and after degradation were explored. Thermogravimetric analysis (TGA) was used to study the thermal decomposition of the PLA/NCC/PEG nanocomposites before and after degradation. The results showed that the presence of hydrophilic NCC and PEG significantly accelerated the hydrolytic degradation of PLA, which was related to the rapid dissolution of PEG causing easy access of water molecules to the composites and initiating fast hydrolytic chain scission of PLA. The thermal degradation temperatures of the nanocomposites slightly decreased due to the poor thermal stability of NCC in comparison with that of the neat PLA. After degradation, the thermal stability of the separated PLA from nanocomposites significantly decreased because the molecular decreased during the hydrolytic process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46933.  相似文献   

18.
Polylactic acid (PLA)‐based nanocomposites comprising two different types of nanofillers, i.e. sepiolite (SEP) and nano calcium carbonate (NCC), were prepared by internal mixing and injection molding. Because of the different aspect ratio, surface area, and surface property of the nanofillers, their effects on the morphological, mechanical, dynamic mechanical, rheological, and thermal properties of the nanocomposites were shown to be very different. NCC demonstrated more uniform particle dispersion and matrix compatibility than did SEP because of the former's surface treatment, thus leading to higher strength and strain‐at‐failure of PLA/NCC composites. On the other hand, larger aspect ratio and surface area of SEP caused higher melt viscosity, stronger shear thinning, and better thermal resistance of PLA/SEP composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
20.
Biodegradable nanocomposites of Nanocrystalline Cellulose (NCC) and electrospun poly‐(lactic acid) were prepared via a new mixing technique. Dispersion of hydrophilic NCC in hydrophobic PLA was improved through aqueous mixing and freeze drying of perfectly suspended NCC with PLA nanofibers. Freeze drying produced aerogels with good mechanical integrity. The aerogels were further processed via hot pressing. Resulting composites displayed an improvement in mechanical properties, which was greatest at temperatures below the glass transition temperature of PLA. The optimum compositions were found to be in the 0.5–3% NCC (by weight) range. Experiments performed also showed that due to electrospinning, the crystallinity of the PLA slightly increased and this is accompanied by a decrease in its glass transition temperature. Furthermore, adding NCC to the electrospun PLA matrix did not alter the crystallinity of the final composite. The composites investigated proved their potential to be used in packaging and tissue engineering applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3345–3354, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号