首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The hybrid material of EP‐POSS mixture was synthesized by the hydrolysis and condensation of (γ‐glycidoxypropyl) trimethoxysilane. A series of binary systems of EP‐POSS/epoxy blends, epoxy resin modified by silica nanoparticles (SiO2/epoxy), and ternary system of SiO2/EP‐POSS/epoxy nanocomposite were prepared. The dispersion of SiO2 in the matrices was evidenced by transmission electron micrograph, and the mechanical properties, that is, flexural strength, flexural modulus, and impact strength were examined for EP‐POSS/epoxy blends, SiO2/epoxy, and SiO2/EP‐POSS/epoxy, respectively. The fractured surface of the impact samples was observed by scanning electron micrograph. Thermogravimetry analysis were applied to investigate the different thermal stabilities of the binary system and ternary system by introducing EP‐POSS and SiO2 to epoxy resin. The results showed that the impact strength, flexural strength, and modulus of the SiO2/EP‐POSS/epoxy system increased around by 57.9, 14.1, and 44.0% compared with the pure epoxy resin, Ti, Tmax and the residues of the ternary system were 387°C, 426°C, and 25.2%, increased remarkably by 20°C, 11°C and 101.6% in contrast to the pure epoxy resin, which was also higher than the binary systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 810‐819, 2013  相似文献   

2.
Biodegradable nanocomposites of Nanocrystalline Cellulose (NCC) and electrospun poly‐(lactic acid) were prepared via a new mixing technique. Dispersion of hydrophilic NCC in hydrophobic PLA was improved through aqueous mixing and freeze drying of perfectly suspended NCC with PLA nanofibers. Freeze drying produced aerogels with good mechanical integrity. The aerogels were further processed via hot pressing. Resulting composites displayed an improvement in mechanical properties, which was greatest at temperatures below the glass transition temperature of PLA. The optimum compositions were found to be in the 0.5–3% NCC (by weight) range. Experiments performed also showed that due to electrospinning, the crystallinity of the PLA slightly increased and this is accompanied by a decrease in its glass transition temperature. Furthermore, adding NCC to the electrospun PLA matrix did not alter the crystallinity of the final composite. The composites investigated proved their potential to be used in packaging and tissue engineering applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3345–3354, 2013  相似文献   

3.
Core‐sheath structured electrospun fibers with styrene‐butadiene‐styrene (SBS) block copolymer as a rubbery core and polyacrylonitrile (PAN) as a hard sheath were prepared by coaxial electrospinning, and used to improve the toughness of epoxy resin. The surface of the fibers was aminated by reacting PAN with diethylenetriamine to improve the interfacial interaction between the fibers and epoxy. Scanning and transmission electron microscopies confirm the core‐sheath structure of the PAN/SBS fibers. The Charpy impact energy is increased by the addition of electrospun fibers. When the content of aminated core‐sheath fibers is 4 wt %, the Charpy impact energy is increased by 150%. Dynamic mechanical analysis shows that the glass transition temperature of epoxy is not decreased by the addition of core‐sheath fibers. The high impact resistance is attributed to the rubbery core of the fibers that can absorb and dissipate impact energy, and the chemical bonding between the fibers and epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41119.  相似文献   

4.
Dual components of a self‐healing epoxy system comprising a low viscosity epoxy resin, along with its amine based curing agent, were separately encapsulated in a polyacrylonitrile shell via coaxial electrospinning. These nanofiber layers were then incorporated between sheets of carbon fiber fabric during the wet layup process followed by vacuum‐assisted resin transfer molding to fabricate self‐healing carbon fiber composites. Mechanical analysis of the nanofiber toughened composites demonstrated an 11% improvement in tensile strength, 19% increase in short beam shear strength, 14% greater flexural strength, and a 4% gain in impact energy absorption compared to the control composite without nanofibers. Three point bending tests affirmed the spontaneous, room temperature healing characteristics of the nanofiber containing composites, with a 96% recovery in flexural strength observed 24 h after the initial bending fracture, and a 102% recovery recorded 24 h after the successive bending fracture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44956.  相似文献   

5.
In this study, carbon fiber–epoxy composites are interleaved with electrospun polyamide‐6,6 (PA 66) nanofibers to improve their Mode‐I fracture toughness. These nanofibers are directly deposited onto carbon fabrics before composite manufacturing via vacuum infusion. Three‐point bending, tensile, compression, interlaminar shear strength, Charpy impact, and double cantilever beam tests are performed on the reference and PA 66 interleaved specimens to evaluate the effects of PA 66 nanofibers on the mechanical properties of composites. To investigate the effect of nanofiber areal weight density (AWD), nanointerlayers with various AWD are prepared by changing the electrospinning duration. It is found that the electrospun PA 66 nanofibers are very effective in improving Mode‐I toughness and impact resistance, compressive strength, flexural modulus, and strength of the composites. However, these nanofibers cause a decrease in the tensile strength of the composites. The glass‐transition temperature of the composites is not affected by the addition of PA 66 nanofibers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45244.  相似文献   

6.
Different weight percentage (2, 3, 4, and 5 wt %) of polyaniline (PANI) were incorporated into electrospun poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) composite membranes (esCPMs). The regular morphology, molecular structure, crystallinity, porosity, electrolyte uptake, and leakage of the composite membranes were examined. The esCPMs were activated in liquid electrolyte containing 0.5 M LiI, 0.05 M I2, and 0.5 M 4‐tert‐butylpyridine and 0.5 M 1‐butyl‐3‐methylimidazoliun iodide in acetonitrile to afford electrospun PVdF‐HFP/PANI composite membrane electrolytes (esCPMEs). The influence of different wt % of PANI on the esCPMEs was studied by electrochemical impedance measurements and Tafel polarization studies. The photovoltaic performance of a dye‐sensitized solar cell assembled using 3 wt % PANI incorporated esCPME exhibits a higher power conversion efficiency of 7.20% than that assembled using esPME (η = 6.42%). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42777.  相似文献   

7.
In this article, we report the development of graphene oxide (GO) reinforced electrospun poly(carbonate urethane) (PCU) nanocomposite membranes intended for biomedical applications. In this study, we aimed to improve the mechanical properties of PCU fibroporous electrospun membranes through fiber alignment and GO incorporation. Membranes with 1, 1.5, and 3% loadings of GO were evaluated for their morphology, mechanical properties, crystallinity, biocompatibility, and hemocompatibility. The mechanical properties were assessed under both static and dynamic conditions to explore the tensile characteristics and viscoelastic properties. The results show that GO presented a good dispersion and exfoliation in the PCU matrix, contributing to an increase in the mechanical performance. The static mechanical properties indicated a 55% increase in the tensile strength, a 127% increase in toughness for 1.5 wt % GO loading and the achievement of a maximum strength reinforcement efficiency value at the same loading. Crystallinity changes in membranes were examined by X‐ray diffraction analysis. In vitro cytotoxicity tests with L‐929 fibroblast cells and percentage hemolysis tests with fresh venous blood displayed the membranes to be cytocompatible with acceptable levels of hemolytic characteristics. Accordingly, these results highlight the potential of this mechanically improved composite membrane's application in the biomedical field. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41809.  相似文献   

8.
Comprehensive high‐performance epoxy nanocomposites were successfully prepared by co‐incorporating organo‐montmorillonite (o‐MMT) and nano‐SiO2 into epoxy matrix. Because of the strong interaction between nanoscale particles, the MMT layers were highly exfoliated, and the exfoliated nanoscale MMT monoplatelets took an interlacing arrangement with the nano‐SiO2 particles in the epoxy matrix, as evidenced by X‐ray diffraction measurement and transmission electron microscopy inspection. Mechanical tests and thermal analyses showed that the resulting epoxy/o‐MMT/nano‐SiO2 nanocomposites improved substantially over pure epoxy and epoxy/o‐MMT nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. This study suggests that co‐incorporating two properly selected nanoscale particles into polymer is one pathway to success in preparing comprehensive high‐performance polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Polystyrene (PS) microencapsulated paraffin wax (MePW) and PS–SiO2 MePW were used to improve the form‐stability of PW in hydroxyl‐terminated polybutadiene‐derived polyurethane (HTPB) binder. HTPB matrix containing different contents of PS MePW, PS–SiO2 MePW, and PW were prepared. The chemical composition, crystallinity, microstructure, heat capacities, thermal stabilities, thermal reliabilities, leakage, and mechanical properties of the composites were compared using Fourier transforms infrared spectroscope, X‐ray diffractometer, scanning electronic microscope, differential scanning calorimeter, thermo‐gravimetric analyzer, thermal cycling test, leaking test, compression, and tensile tests, respectively. The results showed that the MePW/PW/HTPB composites were prepared without chemical reaction. The thermal stability and mechanical properties of PS–SiO2 MePW/PW/HTPB increased more dramatically than that of PS MePW/PW/HTPB. With the increasing contents of MePWs, the PW leakage of the composites decreased, especially for PS MePW/PW/HTPB. Consequently, the MePW/PW/HTPB composites possess a potential application for PW‐based polymer‐bonded explosive system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46222.  相似文献   

10.
The electro‐activity and mechanical properties of PVDF depends mainly on the β‐phase content and degree of crystallinity. In this study, cellulose fibers were used to improve these characteristics. This could be achieved because the hydroxyl groups on cellulose would force the fluorine atoms in PVDF to be in the trans‐conformation, and the cellulose particles could act as nucleation centers. Electrospinning was used to prepare the PVDF/cellulose (nano)fibrous films, and this improved the total crystallinity and the formation of β‐crystals. However, the presence and amount of cellulose in PVDF were found to have little influence on the β‐phase content and on the total crystallinity of PVDF. Improvements in the extent of crystallinity and the β‐phase content were primarily brought about by the chain‐ and crystal orientation as a result of electrospinning. The thermal stability of PVDF in the composites slightly increased with increasing cellulose content in the composites up to 1.0 wt %, while the modulus and tensile strength significantly increased up to the same filler level. The dielectric storage permittivity also increased with increasing cellulose content, but the presence of cellulose had no influence on the dynamics of the γ‐ and β‐relaxations of the PVDF. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43594.  相似文献   

11.
In this study, free‐volume effects on the thermal and mechanical properties of epoxy–SiO2 nanocomposites were investigated. SiO2 particles ranging from 15 nm to 2 µm were used, and the nature of the matrix–filler interphase was modified by surface grafting. Nanoparticles 15 nm in diameter yielded an increase in the glass‐transition temperature (Tg) of the composites up to 5 °C; at the same time, they increased the storage modulus (E′) from 2340 to 2725 MPa. Conversely, large particles markedly decreased both Tg and E′; this suggested the pivotal role of nanoparticle size on the final properties of the nanocomposite. The functionalization of SiO2 nanoparticles markedly improved their dispersion within the epoxy matrix. The positron annihilation lifetime spectroscopy results indicate that the free volume strongly depended on the interphase. These experimental findings obtained here could be extrapolated to industrially relevant nanocomposites and could provide a rationale for the comprehension of free‐volume effects on the thermal and mechanical properties of nanocomposite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45216.  相似文献   

12.
Carbon nanotubes (CNTs) based polymer nanocomposites hold the promise of delivering exceptional mechanical properties and multifunctional characteristics. However, the realization of exceptional properties of CNT based nanocomposites is dependent on CNT dispersion and CNT‐matrix adhesion. To this end, we modified MWCNTs by Prato reaction to yield aromatic (phenyl and 2‐hydroxy‐4‐methoxyphenyl) substituted pyrrolidine functionalized CNTs (fCNT1 and fCNT2) and aliphatic (2‐ethylbutyl and n‐octyl) substituted pyrrolidine functionalized CNTs (fCNT3 and fCNT4). The functionalization of CNTs was established by Thermogravimetric analysis (TGA), Raman Spectroscopy, and XPS techniques. Optical micrographs of fCNT epoxy mixture showed smaller aggregates compared to pristine CNT epoxy mixture. A comparison of the tensile results and onset decomposition temperature of fCNT/epoxy nanocomposite showed that aliphatic substituted pyrrolidine fCNT epoxy nanocomposites have higher onset decomposition temperature and higher tensile toughness than aromatic substituted pyrrolidine fCNT epoxy nanocomposites, which is consistent with the dispersion results of fCNTs in the epoxy matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42284.  相似文献   

13.
Summary: Highly porous poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (PVdF‐HFP)/TiO2 membranes were prepared by a phase inversion technique, using dimethyl acetamide (DMAc) as a solvent and water as a non‐solvent. Their physical and electrochemical properties were then characterized in terms of thermal and crystalline behavior, as well as ionic conductivity after absorbing an electrolyte solution of 1 M LiPF6 dissolved in an equal weight mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). For comparison, cast films and their electrolytes were also made by a conventional casting method without using the water non‐solvent. In contrast to the case of using N‐methyl‐2‐pyrrolidone (NMP) as a solvent, the PVdF‐HFP/TiO2 composite electrolytes, obtained using DMAc, exhibited superior properties of electrochemical stability and interfacial resistance with a lithium electrode but had lower ionic conductivities. It was also demonstrated that the phase inversion membrane was more effective than the cast film as the polymer electrolyte of a lithium rechargeable battery. As a result, a phase inversion membrane with 50 wt.‐% TiO2 was demonstrated to be the optimal choice for application in a lithium rechargeable battery.

Time evolutions of interfacial resistance between polymer electrolyte and lithium electrodes.  相似文献   


14.
The convection battery forces flow of electrolyte through the cathode, anode, and the separator between them, unlike a flow battery where electrolyte cannot cross the separator. The goal is to increase ion fluxes (A/cm2) to realize the benefit of thicker electrodes, lower cost batteries, and reduced charge times. A pump that circulates electrolyte was turned off to create a diffusion control to which the performance of the convection battery was compared. Based on performance at <1.1 V overpotential (based on a 3.1 V open circuit) and similar capacity utilization, the convection battery provided a 5.6‐fold increase in ion flux for these initial studies, increasing flux from 1.6 to 8–10 A/cm2. Little capacity fade was observed on the measured discharge cycles (10 cycles). These studies provided an important milestone in the research, development, and validation of a new battery design including cycling studies with lithium iron phosphate chemistry. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1774–1779, 2013  相似文献   

15.
This present article investigates the effect of silane‐treated basalt fibers (TBFs) on the morphological, mechanical and thermal properties of cyanate ester/benzoxazine (CE/BOZ) resin composites. The characterization was made using a scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), flexural test, impact strength (IS) test, microhardness test, dynamic scanning calorimetry, and thermogravimetric analysis. The mechanical test results inferred the distinctive improvements in the values of the flexural strength and modulus, IS, and microhardness of the CE/BOZ composites. The thermal stabilities in terms of the Tg, T5%, T10%, and THRI were appreciably improved and were higher than those of the pure CE/BOZ resin. Data from the SEM and FTIR tests ascertained the good dispersion and adhesion between the TBFs and the resin matrix, which might be behind the significant enhancement in the ultimate performances of the composites, with respect to the distinguished properties of BFs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46283.  相似文献   

16.
A series of the surface‐functionalized nano‐SiO2/polybenzoxazine (PBOZ) composites was produced, and an attempt was made to improve the toughness of PBOZ material, without sacrificing other mechanical and thermal properties. A benzoxazine functional silane coupling agent was synthesized to modify the surface of nano‐SiO2 particles, which were then mixed with benzoxazine monomers to produce the nano‐SiO2‐PBOZ nanocomposites. The notched impact strength and the bending strength of the nano‐SiO2‐PBOZ nanocomposites increase 40% and 50%, respectively, only with the addition of 3 wt % nano‐SiO2. At the same load of nano‐SiO2, the nano‐SiO2‐PBOZ nanocomposites exhibit the highest storage modulus and glass‐transition temperature by dynamic viscoelastic analysis. Moreover, the thermal stability of the SiO2/PBOZ nanocomposites was enhanced, as explored by the thermogravimetric analysis. The 5% weight loss temperatures increased with the nano‐SiO2 content and were from 368°C (of the neat PBOZ) to 379°C or 405°C (of the neat PBOZ) to 426°C in air or nitrogen with additional 3 wt % nano‐SiO2. The weight residue of the same nanocomposite was as high as 50% in nitrogen at 800°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The effects of alignment of polyacrylonitrile (PAN) nanofibers and a two‐step drawing process on the mechanical properties of the fibers were evaluated in the current study. The alignment was achieved using a high‐speed collector in electrospinning synthesis of the nanofibers. Under optimal two‐step drawing conditions (e.g., hot‐water and hot‐air stretching), the PAN nanofiber felts exhibited large improvements in both alignment and molecular chain‐orientation. Large increase in crystallinity, crystallite size, and molecular chain orientation were observed with increasing draw ratio. Optimally, stretched PAN‐based nanofibers exhibited 5.3 times higher tensile strength and 6.7 times higher tensile modulus than those of the pristine one. In addition, bulk density of the drawn PAN nanofibers increased from 0.19 to 0.33 g/cm3. Our results show that fully extended and oriented polymer chains are critical in achieving the highest mechanical properties of the electrospun PAN nanofibers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43945.  相似文献   

18.
Although β‐spodumene/anorthite composites are interesting systems, little research work has been done to study their properties. This study aims at investigating the preparation and properties of β‐spodumene/anorthite composites containing β‐spodumene proportions ranging between 10 and 25 mass %. X‐ray diffraction analysis (XRD), Scanning electron microscopy (SEM), and the coefficient of thermal expansion (CTE) were used to characterize the effect of addition of β‐spodumene on the phase relations, microstructure, and thermal expansion behavior of resultant composites. The results show that the presence of β‐spodumene significantly reduces the porosity and reduces the densification temperature. It reduces thermal expansion and enhances the mechanical properties of anorthite‐containing composites.  相似文献   

19.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   

20.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号