首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The phosphorus‐containing acrylate monomer, 2‐acryloyloxyethyl diethyl phosphate (ADEP), was synthesized and applied to cotton fabric by using admicellar polymerization. Sodium dodecylbenzene sulfonate was used as the anionic surfactant. The film of polymerized monomer (PADEP) formed on the cotton surface was characterized by FTIR‐ATR spectroscopy and SEM. Thermal and flame retardant properties of PADEP‐coated cotton were investigated by TGA and flammability tests. Results showed that PADEP polymer film was successfully formed on the cotton fabric. The TGA and DTG analyses showed that the phosphorus‐containing PADEP lowered the decomposition temperature of the treated fabric resulting in a higher char yield than in the case of untreated cotton. The flammability tests showed that the treated cotton had much improved flame retardancy property after the treatment. The treated fabric also retained its good pliability and soft touch with good air permeability. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
To examine the feasibility of developing flame‐retardant‐textile coated fabric systems with electrospun polyamide/boric acid nanocomposites, fiber webs coated on cotton substrates were developed to impart‐fire retardant properties. The morphology of the polyamide/boric acid nanocomposite fibers was examined with scanning electron microscopy. The flame‐retardant properties of coated fabric systems with different nanoparticle contents were assessed. The flame retardancy of the boric acid coated fabric systems was evaluated quantitatively with a flammability test apparatus fabricated on the basis of Consumer Product Safety Commission 16 Code of Federal Regulations part 1610 standard and also by thermogravimetric analysis. The 0.05 wt % boric acid nanocomposite fiber web coated on pure cotton fabric exhibited an increment in flame‐spreading time of greater than 80%, and this indicated excellent fire protection. Also, the coated fabric systems with 0.05% boric acid nanocomposite fiber webs exhibited a distinct shift in the peak value in the thermal degradation profile and a 75% increase in char formation in the thermooxidative degradation profile, as indicated by the results of thermogravimetric analysis. The results show the feasibility of successfully imparting flame‐retardant properties to cotton fabrics through the electrospinning of the polymer material with boric acid nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A new kind of eco‐friendly chicken‐feather protein‐based phosphorus–nitrogen‐containing flame retardant was synthesized successfully with chicken‐feather protein, melamine, sodium pyrophosphate, and glyoxal. And its structure was characterized by Fourier transform infrared spectroscopy, and the thermogravimetry of the agent was analyzed. Then the flame retarding performances of the chicken‐feather protein‐based flame retardant and in combination with the borax and boric acid in application to a woven cotton fabric were investigated by the vertical flammability test and limited oxygen index test. In addition, the surface morphologies of the treated and untreated fabrics were conducted by the scanning electron micrographs (SEM), and the thermogravimetric analyses of the treated and untreated cotton were explored, and the surface morphologies of char areas of the treated and untreated fabrics after burnt were tested by the SEM. The results showed that the flame retardancy of the cotton fabric treated by the chicken‐feather protein‐based flame retardant in combination with borax and boric acid was improved further, and the combination of the chicken‐feather protein‐based flame retardant and borax and boric acid could facilitate to form a homogenous and compact intumescing char layer, and the combination of them plays a good synergistic effect in the improvement of the flame retardancy of the treated cotton fabric. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40584.  相似文献   

5.
Complex multilayer coatings composed of α‐zirconium phosphate (ZrP), polyethylenimine (PEI), and ammonium polyphosphate (APP) were constructed via layer‐by‐layer assembly method for flame retardant ramie fabric. Bicomponent PEI/ZrP layers served as insulating barrier coating, and bicomponent PEI/APP layers served as intumescent coating. The flame retardancy of the coated ramie fabric was strongly dependent on the nature of the coatings and the layer‐by‐layer assembly patterns. The coated ramie fabric with inside PEI/ZrP layers and outside PEI/APP layers possessed the most uniform and consistent coating surface morphology, as well as the highest content of N and P elements, resulting in an excellent improvement in flame retardancy of ramie fabrics. When this kind of coated ramie fabric was heated, the inner PEI/ZrP layer effectively prevent oxygen and heat from penetrating into the substrate, and the outer PEI/APP layer exposed to air with good expansion during combustion. The synergistic effect was formed during the combustion process and could impart ramie fabrics with high flame retardancy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45556.  相似文献   

6.
Poly(diphenolic acid‐phenyl phosphate) [poly(DPA‐PDCP)], obtained from diphenolic acid (a well‐known biomass chemical), was used together with polyethylenimine (PEI) to construct a flame retardant surface coating for ramie fabric using layer‐by‐layer self‐assembly. Attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and scanning electron microscope (SEM) equipped with an energy dispersive X‐ray spectrometer (EDX) were used to confirm the successful formation of layer by layer assembly. Assessment of the thermal and flammability properties for poly(DPA‐PDCP)/PEI‐coated ramie fabrics showed that the thermal stability, flame retardancy, and residual char were enhanced as the concentration of poly(DPA‐PDCP) and the BL number in the LbL process increased as well as the treatment of KH550 was applied. SEM and EDX analysis of the char residue confirmed further the intumescent flame retardant mechanism. This work demonstrated the great potentials of poly(DPA‐PDCP)/PEI flame retardant nanocoating constructed by LbL assembly method in the application of ramie fabric. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44795.  相似文献   

7.
Sulfonated melamine‐formaldehyde (SMF) resin was successfully synthesized with a mixture of formaldehyde, melamine, and NaHSO3 in an aqueous solution. Then the SMF was used as the blowing agent to combine with chitosan and phytic acid for fabricating the intumescent flame retardant coating on the surface of the cotton fabric by layer‐by‐layer (LbL) self‐assembled technology. As characterized by X‐ray photoelectron spectroscopy, scanning electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy, the (chitosan/SMF + phytic acid)n coating was successfully deposited on the surfaces of cotton fibers. Thermogravimetric analysis results exhibited that the thermal stabilities of coated cotton fabrics under nitrogen and air atmosphere were enhanced at temperatures ranging from 400 to 700 °C compared with pure cotton fabric. At 700 °C, the char residues of cotton‐5BL and cotton‐10BL under a nitrogen atmosphere were improved 25.9 and 32 wt % than that of pure cotton fabric, respectively. In the vertical flame test, the self‐extinguishing could be obtained for the cotton‐10BL sample. This work first utilized SMF as negative polyelectrolyte to fabricate intumescent flame retardant coating by LbL self‐assembled technology on cotton fabric to strengthen its thermal stability and flame resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46583.  相似文献   

8.
Flame retardants are a growing area of research interest. Nonhalogenated, durable, and nonleachable flame retardants are one of the main strategies used in the research of flame retardant polymers. In this regard, the covalent attachment of phosphorus-containing flame retardants onto cotton fabric has been developed. Two types of reactive phosphorus-containing flame retardants (MKT-1 and MKT-2) have been synthesized and used as a surface coating for cotton fabric. MKT-1 possesses anhydride and acid functionalities that can react with the  OH functionalities in cellulose. In addition, MKT-2 has both acid and organosilicon groups that can also react with the hydroxy group present in cellulose. The structures of the reactive flame retardants (MKT-1 and MKT-2) were characterized using 13C and 31P nuclear magnetic resonance spectroscopy. Thermal properties of the coated and uncoated cotton fabrics were investigated using thermogravimetric analysis. Surface characterization was carried out using scanning electron microscopy and X-ray photoelectron spectroscopy. A standard test method used to evaluate the flammability of blankets (BS 5852) was also applied to characterize the fire retardant properties of the coated and uncoated cotton fabrics studied. Different loadings of MKT-1 and MKT-2 on the fabric (10, 20, and 30% by weight in dimethylformamide solution) were applied in the dip coating process. The cotton fabric coated with 30% MKT-2 does not burn after being subjected to a propane burner for 20 s and also produced the highest char yield (36%) at 500 °C. Inductively coupled plasma–optical emission spectrometry showed that MKT-1 contains 8.23 ± 0.33 P% whereas MKT-2 contains 3.88 ± 0.15 P%. Although MKT-1 possess a higher P content than MKT-2, the additive effect caused by the organosilicon and nitrogen groups present in MK-2 enhance its flame retardant properties. Furthermore, the covalently attached flame retardant materials are durable and do not hydrolyze during washing. The mechanical properties of coated fabrics were characterized by a tensile test and significant change in elongation at break was observed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47935.  相似文献   

9.
In this study, flame retardancy properties of fabrics treated with phosphorous (P) doped and undoped SiO2 thin films were developed by sol–gel technique. As to this aim, P‐doped and undoped SiO2 film were coated on cotton fabric from the solutions prepared from P, Si‐based precursors, solvent, and chelating agent at low temperature in air using sol–gel technique. To determine solution characteristics, which affect thin film structure, turbidity, pH values, and rheological properties of the prepared solutions were measured using a turbidimeter, a pH meter, and a rheometer machines before coating process. The thermal, structural, and microstructural characterization of the coating were done using differential thermal analysis/thermograviometry, fourier transform infrared spectroscopy, X‐ray diffractometry, and scanning electron microscopy. In addition, tensile strength, wash fastness, flame retandancy, and lightness properties of the coated fabrics were determined. To compensate the slight loss of tensile strength of samples, which occurred at the treated fabrics with P‐doped Si‐based solutions, the cotton fabrics were coated with polyurethane films during second step. In conclusion, the flame retardant cotton fabric with durability of washing as halogen‐free without requiring after treatment with formaldehyde was fabricated using sol–gel processing for the first time. Moreover the cotton fabrics, which were treated with P‐doped Si‐based solutions and then coated with polyurethane at second step, still has got nonflammable property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
Blend fabrics of cotton and polyester are widely used in apparel, but high flammability becomes a major obstacle for applications of those fabrics in fire protective clothing. The objective of this research was to investigate the flame retardant finishing of a 50/50 polyester/cotton blend fabric. It was discovered previously that N,N′‐dimethyloldihydroxyethyleneurea (DMDHEU) was able to bond a hydroxy‐functional organophosphorus oligomer (HFPO) onto 50/50 nylon/cotton blend fabrics. In this research, the HFPO/DMDHEU system was applied to a 50/50 polyester/cotton twill fabric. The polyester/cotton fabric treated with 36% HFPO and 10% DMDHEU achieved char length of 165 mm after 20 laundering cycles. The laundering durability of the treated fabric was attributed to the formation of polymeric cross‐linked networks. The HFPO/DMDHEU system significantly reduced peak heat release rate (PHRR) of cotton on the treated polyester/cotton blend fabric, but its effects on polyester were marginal. HFPO/DMDHEU reduced PHRR of both nylon and cotton on the treated nylon/cotton fabric. It was also discovered that the nitrogen of DMDHEU was synergistic to enhance the flame retardant performance of HFPO on the polyester/cotton fabric.  相似文献   

11.
Layer‐by‐layer (LbL) assembly of nanocoatings on fabric substrates has been very successful in terms of reduction of flammability. In particular, an LbL system comprised ammonium polyphosphate as the polyanion and chitosan as the polycation, applied to cotton fabric, dramatically reduced cotton flammability. At this point, the fire‐retardant (FR) mechanism of action of this system has never been fully elucidated. Sonicated and nonsonicated coated cotton fabrics were evaluated using a vertical flame test and mass loss calorimeter. Coating morphology was investigated before and after burning. Thermal analyses and chemical analyses in the condensed phase (and in the gas phase) were conducted to reveal the FR mechanism of action. At the cotton surface, a combination of both condensed (formation of aromatic char) and gas phase (release of water and highly flammable gases) mechanisms impart the FR behavior, promoting a kind of “microintumescence” phenomenon. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43783.  相似文献   

12.
To investigate the flame retardant properties and mechanisms of those fire retardant polymer systems that mainly depend on the produced protective char shields, quantitative analysis for the barrier quality of the char layer is important but still a challenge. In the present article, a novel and simple characterization method based on atmosphere permeability is proposed to quantitatively evaluate the barrier property: an incombustible fabric carrier coated with the flame retardant polymer solution, is carbonized at high temperature to make the produced char residue adhered to the fabric. As the interfibrous gaps are filled and closed by the chars, the atmosphere permeability of the heated fabric decreases compared with that of original one. Their difference value can really reflect the contribution of the charring residue to the barrier property. This method combined with other characterizations including residue morphology observation, vertical burning test, limiting oxygen index, and calorimetric analysis, is very helpful to reveal the correlation between the flame retardance and barrier property of the char residue, evaluate the flame retardant efficiency in the condense phase, and estimate the corresponding flame retardant mechanisms. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45102.  相似文献   

13.
Flame‐retardant properties of nylon 6/organically modified montmorillonite (OMMT) thin films, fibers, and fabrics were investigated to determine the efficacy of condensed‐phase flame‐retardant mechanism in relation to montmorillonite concentration, sample geometry, and flame test conditions. Horizontal flame spread conducted on thin films revealed no significant difference in burning behavior between nylon 6 and nanocomposites with 5 wt% OMMT. However, with a higher concentration level of 8–10 wt% OMMT, the films burned without any dripping. The flame spread rate was reduced by 30–40% as compared with nylon 6 films. Cone calorimeter study on nanocomposite films showed that the peak heat release rate of nylon 6 was reduced by 65–67% with 8–10 wt% OMMT. Undrawn nanocomposite monofilaments with 10 wt% OMMT burned slowly and steadily in Bunsen flame without dripping. In cone calorimeter, nanocomposite fabrics with 8 wt% OMMT showed reduced heat release rate and mass loss rate compared to nylon 6 fabrics with increase in fabric tightness factor. The mass loss rate was about 40–60% less when compared with nylon 6 fabrics. The fabric char structure remained intact after burning. This demonstrated the interdependence of fabric tightness factor, OMMT concentration, and source of heat flux in forming a protective char and affecting the flammability of fabrics. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
A three‐layer functional coating was prepared through layer‐by‐layer (LbL) assembly and a sol–gel process. The multilayered coating was composed of a phytic acid (PA) coating dipped between two layers of flexible polysiloxane coatings and was deposited on the polyester fabric by LbL assembly. Flammability tests indicated that the multilayer coating prevented droplet generation during combustion. The PA also absorbed the reactive free radicals to reduce the flame‐burning rate. After being soaked for only 20 min in PA solution, the fabric exhibited self‐extinguishing properties and antidroplet effect during the vertical flame test, while cone calorimetry confirmed that the coated fabric exhibited a 65% decrease in the peak heat release rate and reduced the total amount of smoke released by 72%. After washing the coated fabric 45 times, there was no significant decrease in the phosphorus content and the limiting oxygen index of coated fabrics. Thus, the coating synthesized in this study is an effective method of constructing durable, functional coatings on the surface of fabrics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46414.  相似文献   

15.
Different from the conventional method of developing stimuli‐sensitive textiles by graft copolymerization of environmental responsive polymers onto the fabric, the coating technique was applied to bond temperature‐sensitive hydrogels with cotton fabric through chemical covalent in our work. A temperature‐sensitive linear copolymer of Ntert‐butylacrylamide (NTBA) and acrylamide (AAm) was prepared in methanol. Then, the cotton fabrics were coated using an aqueous solution of this copolymer containing 1,2,3,4‐butanetertracarboxylic acid as a crosslinker and sodium hypophosphite (SHP) as a catalyst, followed by drying and curing. The surface of the cotton fabrics was bonded on more or less coatings of poly (NTBA‐co‐AAm) hydrogels, as verified by Fourier transform infrared spectroscopy and scanning electron microscopy images. The poly(NTBA‐co‐AAm) hydrogels‐coated fabrics exhibited temperature sensitive, and the temperature interval of the deswelling transition was higher than lower critical solution temperature of linear copolymer solution. The coated fabrics presented good water‐impermeable ability because of the swelling of hydrogels bonded, especially when the add‐on was as high as 14.14%. Environmental scanning electron microscopy images revealed that coating hydrogels swelled and covered on the surface as a barrier to prevent water from penetrating once the coated fabric came into contact with water. The findings demonstrate that the temperature‐sensitive hydrogels can be covalently bonded on the cotton fabrics by coating technique and the coated fabrics have potential on immersion fabrics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A novel halogen‐free and formaldehyde‐free flame retardant (FR), which contains phosphorus, nitrogen, and silicon, was synthesized for cotton fabrics considering the synergistic effect of phosphorus, nitrogen, and silicon. The structure of the new FR was characterized by Fourier‐trans‐form infrared spectroscopy, and the surface morphology of the treated fibre was observed using scanning electron microscope. The thermal property of the FR treated cotton fabric was studied through thermal gravimetric analysis. The TG results indicate that the FR can protect cotton fabric from fire to a certain degree. The vertical flammability test and limiting oxygen index results further indicate that the FR has excellent FR properties. Finally, the durability and other performance properties of the treated fabric were studied and the results show that the new materials can be used as a semi‐durable FR for cellulosic fibres. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this research was to use polyamino carboxylic acids (PACAs) and their combination with sodium hypophosphite (NaH2PO2) as a flame‐retardant finishing system for cotton fabrics. Flammability of cotton fabric was evaluated by 45° flammability test, differential scanning calorimetry and measuring the char yield. The combination of polyamino carboxylic acids and sodium hypophosphite as a phosphorus‐containing catalyst reduces the flammability of cotton. The pyrolysis properties and the results of char yield of the finished cotton show that with increasing amount of catalyst, the flame retardancy increases. Fastness against multiple laundering, whiteness and tensile strength of the cotton finished with PACAs/NaH2PO2 to multiple standard laundering have been studied, too. The flame retardancy effect has an acceptable washing fastness. Whiteness and tensile strength of the finished cotton do not change significantly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Layer by layer (LBL) assembly technique was used to deposit multilayer coating containing phosphorus-nitrogen onto the surface of fibers to improve the flame retardancy of polyester-cotton (PET-COT) blended fabric. Ellipsometer results confirmed that polyallylamine hydrochloride (PAH), melamine (MEL), and ammonium polyphosphate (APP) grew linearly on silicon wafer during the LbL process. The LOI value of coated PET-COT fabric was increased from 20.8% of pristine fabric to 28.4% by the presence of about 9 wt% coating. Besides, this intumescent nanocoated PET-COT fabric was self-distinguished during the vertical burning test. Thermogravimetric analysis under both nitrogen and air atmosphere revealed that the initial degradation temperature of the coated sample was decreased and the char residue amount was significantly improved during combustion. The flame resistance performance evaluation by pyrolysis combustion flow calorimeter indicated that this coating effectively reduced the peak heat release rate of PET-COT matrix. The scanning electron micrographs of char residue demonstrated that the char formation in the condensed phase and free radical caption in the gas phase was responsible for the improved flame retardancy. It is suggested this unique facile coating technology with low cycles and high efficiency has great potential to produce commercially available flame retardant polymeric-cotton blend fabrics.  相似文献   

19.
In this article, N‐Methylol dimethylphosphonopropionamide (FR) in combination with a melamine resin (CL), phosphoric acid (PA) catalyst and zinc oxide (ZnO) or nano‐ZnO co‐catalyst were used (FR‐CL‐PA‐ZnO or nano‐ZnO system) to impart flame‐retardant property on cotton fabrics. FR‐CL or FR‐CL‐PA‐treated cotton specimen showed roughened and wrinkled fabric surface morphology, which was caused by the attack of the FR with slightly acidity. In addition, FTIR analysis showed some new characteristic peaks, carbonyl, CH2 rocking and CH3 asymmetric and CH2 symmetric stretching bands, in the chemical structure of treated cotton specimens. Apart from these, the flame ignited on the flame‐retardant‐treated fabrics (without subjected to any post‐wet treatment) extinguished right after the removal of ignition source. However, FR‐CL treated specimens were no longer flame‐resistant when the specimens subjected to neutralization and/or home laundering, while FR‐CL‐PA treated specimens showed opposite results. By using 0.2% and 0.4% of ZnO or nano‐ZnO as co‐catalyst, the flame spread rate of neutralized and/or laundered test specimens decreased, even the specimens were undergone 10 home laundering cycles. Moreover, flame‐retardant‐treated cotton specimens had low breaking load and tearing strength resulting from side effects of the crosslinking agent used, while addition of ZnO or nano‐ZnO co‐catalyst could compensates for the reduction. Furthermore, the free formaldehyde content was dropped when ZnO and nano‐ZnO co‐catalyst was added in the treatment. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The objective of this work was to investigate plasma modification of viscose for environmentally friendly flame‐retardant cellulosic materials. Sodium silicate layers were predeposited onto viscose and cotton flannel substrates and grafted/crosslinked using atmospheric pressure plasma. The modified cellulosic fabrics tested with the automated 45° angle test chamber showed significant improvement in their flame‐retardant properties. Analysis conducted by TGA and DSC exhibited enhanced thermal stability of the treated fabrics. Furthermore, the surface analysis (XPS and SEM) confirmed the presence of the SiO2 network attached to the substrate even after intense ultrasound washes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号